Toggle light / dark theme

An automated system could potentially monitor real-time images of coronal loop brightness shifts from the Solar Dynamics Observatory, thus enabling scientists to issue timely alerts.

“We could build on this and come up with a well-tested and, ideally, simpler indicator ready for the leap from research to operations,” said Vadim Uritsky, an expert in space physics at NASA’s Goddard Space Flight Center (GSFC) and Catholic University in Washington D.C.

The discovery of flickering coronal loops as a precursor to solar flares opens up transformative possibilities in both research and technology.

A Massive Star’s Unusual Formation Surprise

Astronomers have uncovered an extraordinary discovery in the formation of stars, observing a colossal young star, MM 1a, forming a smaller companion star, MM 1b, instead of planets. Using the Atacama Large Millimeter/submillimeter Array (ALMA), researchers identified MM 1b on the outskirts of MM 1a’s dense disk of dust and gas, a region traditionally associated with planet formation.

Recent studies challenge the long-held belief that the Milky Way.

The Milky Way is the galaxy that contains our Solar System and is part of the Local Group of galaxies. It is a barred spiral galaxy that contains an estimated 100–400 billion stars and has a diameter between 150,000 and 200,000 light-years. The name “Milky Way” comes from the appearance of the galaxy from Earth as a faint band of light that stretches across the night sky, resembling spilled milk.

Fast radio bursts (FRBs) are intense flashes of radio light that last for only a fraction of a second.

They are likely caused by the intense magnetic fields of a magnetar, which is a highly magnetic neutron star. Beyond that, FRBs remain a bit of a mystery.

We know that most of them originate from outside our galaxy, though the few that have occurred within our galaxy have allowed us to pin the source on neutron stars.

An object we thought belonged to the most common category of planet in the galaxy has turned out to be something we’ve never seen before.

The exoplanet Enaiposha, or GJ 1,214 b, is a hazy world orbiting a red dwarf star about 47 light-years from Earth. Previously likened to a mini-Neptune, in-depth observations obtained using JWST now suggest the exoplanet is more like Venus – only much larger.

This would make it the first known of its kind, a category astronomers are calling ‘Super-Venus’

“Part of the atmosphere of this planet is moving towards us at a high velocity while another part is moving away from us at the same speed,” said Dr. Lisa Nortmann.


Do habitable exoplanets exist that possess life as we know it? Scientists have pondered this longstanding question ever since the first exoplanet was confirmed in the mid-1990s, and this will be the goal of NASA’s upcoming Pandora mission, which is due for launch in the second half of 2025. In preparation for its launch, engineers recently finished assembly of the spacecraft bus, which will house the primary systems of the spacecraft, including its power.

“This is a huge milestone for us and keeps us on track for a launch in the fall,” said Dr. Elisa Quintana, who is the principal investigator for Pandora at NASA’s Goddard Space Flight Center, although the mission operations center for Pandora will be located at the University of Arizona (U of A) Space Institute. “The bus holds our instruments and handles navigation, data acquisition and communication with Earth – it’s the brains of the spacecraft.”

The primary science objectives for Pandora will be to analyze the atmospheres of 20 confirmed exoplanets during the science operations phase of the mission, which is slated to last approximately one year. This will be accomplished when the exoplanet passes in front of its parent star, known as a transit, resulting in light passing through the exoplanet’s atmosphere which Pandora will analyze for the presence of water, hazes, and clouds.

“Part of the atmosphere of this planet is moving towards us at a high velocity while another part is moving away from us at the same speed,” said Dr. Lisa Nortmann.


Do weather patterns on exoplanets mimic those on Earth? This is what a recent study published in Astronomy & Astrophysics hopes to address as an international team of researchers explored unique weather patterns on WASP-127b, which is a hot Jupiter exoplanet located approximately 520 light-years from Earth. This study has the potential to help scientists better understand the formation and evolution of weather patterns on exoplanets throughout the cosmos and how these patterns compare to Earth’s.

For the study, the researchers used the CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES+) instrument installed on the European Southern Observatory’s (ESO) Very Large Telescope (VLT) to observe the atmospheric characteristics during one transit of WASP-127b passing in front of its parent star, with one orbit being completed in approximately 4.2 days.

In the end, the researchers identified signals of water (H2O) and carbon monoxide (CO) within WASP-127b’s atmosphere, along with identifying supersonic jet winds occurring at the exoplanet’s equator estimated to be traveling at approximately 7.7 kilometers per second (4.8 miles per second) or 27,720 kilometers per hour (17,280 miles per hour). These winds were identified to only exist at the equator and not at the poles. For context, the fastest winds recorded at the Earth’s equator is only a few kilometers (miles) per hour. They also found significant temperatures differences between the dayside and night side of WASP-127b, which mimics planetary atmosphere behavior of Earth and other planets in our solar system.

Researchers have discovered two sets of ancient wave ripples on Mars, signatures of long-dried bodies of water preserved in the rock record. Wave ripples are small undulations in the sandy shores of lakebeds, created as wind-driven water laps back and forth. The two sets of ripples indicate the former presence of shallow water that was open to the Martian air, not covered by ice as some climate models would require.

Ripples are one of the clearest indicators of an ancient standing body of water that can be provided by the geologic record. The team estimates that the ripples formed around 3.7 billion years ago, indicating that the Martian atmosphere and climate must have been warm and dense enough to support liquid water open to the air at the time.

The research is described in a paper appearing in the journal Science Advances. Caltech’s John Grotzinger, Harold Brown Professor of Geology, and Michael Lamb, professor of geology, are principal investigators on the study.