Menu

A-PRIZE

Purpose

The purpose of the A-PRIZE is to put development of artificial life forms in the open where it should be. Today, many efforts at developing artificial life are not well publicized. The A-PRIZE serves as a clearing house for information about the race to “Break the Carbon Barrier”. With mega-universities and companies racing to create nonbiological life, now is the time for such a clearing house.
 
With the reality that Nanobiotechnology (in its various guises including Synthetic Biology, Artificial Life, Biological Engineering, etc.) is pouring billions per year into the global race to break through the Carbon Barrier, now is the time to focus on this issue.
 
A bacterium with nonstandard DNA would be immune to bacteriophages, and would therefore have a much higher chance of becoming a broadly successful invasive species. That could devastate ecosystems on a scale that we don’t know the limits of. So let’s try to handle the development of artificial life in an open and responsible way by putting development in the open and engaging in development in a safe manner.
 

Overview

The A-PRIZE was developed by our Scientific Advisory Board member Alan H. Goldstein who coauthored the National Research Council’s triennial review of the National Nanotechnology Initiative (NNI). Input was also provided by other members of our Scientific Advisory Board including Mark A. Rothstein. Read our interview with Alan H. Goldstein!
 
It is awarded to the person or organization responsible for creating an Animat/Artificial life form with an emphasis on the safety of the researchers, public, and environment OR the person or organization who shows that an Animat/Artificial life form has been created. (The second case is to uncover unpublicized or unsafe projects.)
 
For nearly half a century, SETI efforts have Searched for Extra-Terrestrial Intelligence. Instead of searching for alien life outside our planet, the Lifeboat Foundation has decided to take the opposite approach and to search for “alien” life on this planet. We call our efforts “Finding Artificial Life Created by Nanobiotechnology” (FALCN, which is pronounced like falcon).
 
In 1978 the Nobel Prize in Physiology or Medicine was awarded to Werner Arber, Daniel Nathans and Hamilton O. Smith for the discovery of restriction enzymes and their application to problems of molecular genetics. In an editorial comment in the journal Gene, Wacław Szybalski wrote: “The work on restriction nucleases not only permits us easily to construct recombinant DNA molecules and to analyze individual genes but also has led us into the new era of synthetic biology where not only existing genes are described and analyzed but also new gene arrangements can be constructed and evaluated”.
 
We feel it is time to begin the search because considerable advancements in synthetic biology have been made recently. For example, we now have an International Conference on Synthetic Biology. At the most recent conference, our Scientific Advisory Board member Stephen M. Maurer was author of a groundbreaking proposal to finally have a code of conduct for the field of synthetic biology which unfortunately was not accepted at that meeting.
 
Because of rejections of proposals such as Maurer’s there is no coherent federal regulation or plans to develop coherent regulation of emerging fields such as nanobiotechnology/synthetic biology/artificial life. Worldwide, the situation is entirely chaotic.
 

What is an Animat?

This term was developed by Alan H. Goldstein. In his article I, Nanobot, he suggested that a new state of life be named after the contraction of the term “anima-materials” — “animats”. This artificial life form (most likely nanobiotechnology based) must meet the following tests:
A = Devices that can survive and function in our ecosphere, for example inside human beings.
 
B = Devices that can derive energy from biological metabolism. Many nanomedical devices will be powered by the fuel available inside the human body. A common idea is to take our own glucose-oxidizing enzymes and use them as a fuel cell for the nanobiobot.
 
C = Devices capable of copying themselves by molecular self-assembly. Note that any information necessary for the animat’s operations cannot be stored in DNA or RNA or any other methods that are discovered to be used naturally by life on Earth. The corollary: If the information necessary to execute the animat’s operations can be stored in DNA or RNA, then the animat is really biological and is not an animat.
So A + B + C = a self-replicating device capable of living in our ecosphere, powered by fuel available in our ecosphere = Animat.
 
Learn more about the Animat Test!
 

A-PRIZE Taxonomic System

Taxonomic System For Current And Near-Future Life Forms On Earth: Because Molecular Engineering (a.k.a. Nanobiotechnology) is already a reality, we must develop careful terminology in order to characterize the novel life forms that will emerge from this revolutionary endeavor. This table may be considered as a first attempt to create a coherent, fully inclusive set of Life Form Types, i.e. to create an expanded taxonomy that can accommodate the products of Molecular Engineering. Life Form Types are defined based on how a given life form functions and how it came into being. It is crucial to recognize that Molecular Engineering will ultimately result in every possible permutation and combination of these Life Form Types.
 
It is unlikely that a fully functional Synthetic Nonbiological Life Form (a.k.a. an Animat — see Type 4 below) will come into being in the near future. Therefore, the Carbon BarrierTM is defined as the moment in the evolution of human Molecular Engineering when we first create an organism that must execute at least one synthetic nonbiological operation in order to complete its life cycle. The person or group that verifiably creates such an organism with an emphasis on the safety of the researchers, public, and environment, OR the person or group that provides information leading to the discovery that such an organism has been created will win the A-PRIZE.
 
Taxonomy System
 
The Life Form Type Natural Biological has the defining characteristics that Natural Biological Life Forms are limited to organisms wherein all the information necessary to execute the minimum set of physical and chemical operations necessary to complete a life cycle must be stored in DNA and/or RNA. In addition these life forms must either have come about by terrestrial evolution, or via manipulation by Homo sapiens at or above the cellular level of organismal structure.
 
Humans have been genetically manipulating biological life forms such as crop plants for thousands of years via conventional breeding. This definition allows anything down to the product(s) of in vitro fertilization to qualify as a Type 1 Life Form.
 
The Life Form Type Genetically-Engineered Biological has the defining characteristics that Genetically-Engineered Biological Life Forms also conform to the rule that all information necessary to execute the minimum set of physical and chemical operations necessary to complete a life cycle must be stored in DNA and/or RNA. Type 2 Life Forms are created via direct intervention of humans below the cellular level of organization but this intervention uses a “top-down” strategy whereby existing biomolecules are rearranged or chemically modified.
 
In addition to recombinant DNA and the other standard molecular biology tools of biotechnology (e.g. protein engineering, pathway engineering etc.) Type 2 Life Forms would include those created by subcellular methods such as somatic nuclear transfer.
 
The Life Form Type Synthetic Biological has the defining characteristics that Synthetic Biological Life Forms also conform to the rule that all information necessary to execute the minimum set of physical and chemical operations necessary to complete a life cycle must be stored in DNA and/or RNA. Rather than use pre-existing biomolecules, Type 3 Life Forms are created via direct human intervention using a ‘bottom-up’ strategy whereby the minimum number of biomolecules necessary to initiate life cycling (DNA, RNA, proteins, the bounding membrane of a synthetic cell, etc.) are synthesized and assembled in the laboratory de novo from nonliving chemical precursors.
 
The definition of a Type 3 Life Form brings up many interesting questions. For example, if we could synthesize and assemble all the components of a specific strain of E. coli (say K-12) and it began to grow and divide, would it’s progeny be considered Type 3 or Type 1 Life Forms? These issues can only be addressed after we have developed a coherent set of life form definitions.
 
The Life Form Type Synthetic Nonbiological (Animat) has the defining characteristics that Synthetic Nonbiological Life Forms absolutely must not conform to the rule that all information necessary to execute the minimum set of physical and chemical operations necessary to complete a life cycle must be stored in DNA and/or RNA. In fact, the exact opposite condition must be imposed as a taxonomic requirement. A completely Synthetic Nonbiological Life Form would not use any biomolecules to store information or execute life cycle operations. Any such organism would be considered a fully functional Animat.
 
The highest probability is that the first Synthetic Nonbiological Life on Earth will appear in hybrid organisms where one or more essential life cycle operations must be carried out using chemistry outside the parameters set for of the Biological Life. In fact, over the next decade we will see the emergence of Multi-hybrid Life Forms containing Natural, Genetically Engineered, and Synthetic Biological components as well as one or more Synthetic Nonbiological components.
 

What is the Carbon Barrier?

Nanobiotechnology is expected to eliminate the difference between living and nonliving materials, thereby ending biology’s monopoly on life… Alan H. Goldstein has termed that monopoly the “Carbon Barrier”.
 

Judges

The first phase of judging is to determine if proper safety precautions have been taken. Our safety judges are: Russell Blackford, Alan H. Goldstein, Joseph D. Miller, and Philippe Van Nedervelde. All judges must agree that proper safety precautions have been taken for an award to be given. Let us know if you are qualified to be a safety judge!
 
The second phase of judging is to determine if an animat has been created. Our animat judges are: Alan H. Goldstein and Joseph D. Miller. All judges must agree that an animat has been created for an award to be given. Let us know if you are qualified to be a animat judge!
 

Prize

Besides creating an animat, two additional items must be submitted to receive the prize: (1) a description of the measures taken by the researchers to ensure the safety of researchers, the public, and the environment during the course of the research; and (2) an analysis of the ethical, legal, and social implications of the research, along with an indication of what societal measures are needed to maximize the benefits and eliminate or minimize the possible harms flowing from the discovery.
 
We are looking for donors to add to the prize total. To collect the prize money, submit winning entries to [email protected].
 

Notes and References

Artificial Life Likely in 3 to 10 Years, Seth Borenstein, AP – August 19, 2007.
 
I am creating artificial life, declares US gene pioneer, Ed Pilkington, The Guardian, October 6, 2007.
 
I, Nanobot by Alan H. Goldstein – March 9, 2006.
 
Life, Reinvented: A group of MIT engineers wanted to model the biological world. But, damn, some of nature’s designs were complicated! So they started rebuilding from the ground up — and gave birth to synthetic biology, Oliver Morton, Wired – January, 2005.
 
Regenesis, Matthew Herper, Forbes – August 18, 2006.
 
Tweaking Genes in the Basement, Allen Riddell – July 6, 2006.
 
The Ultimate Right to Life Debate: Synthetic biologists know the meaning of life, but do they know the meaning of synthetic biology? by Alan H. Goldstein – September, 2006.
 
#SOCIAL_NETWORKS

Use the below form to donate via Amazon, American Express, anoncoin, bitcoin, bitcoin cash, bytecoin, check, CryptogenicBullion, dash, Diners Club, Discover, ethereum, JCB, litecoin, monero, namecoin, MasterCard, noblecoin, NXT, PayPal, peercoin, solarcoin, Visa, wire, or Zcash. You can also send anonymous anoncoin donations to ALifeboatMFbsbBnM157zSwmvLefBMFyRA, bitcoin donations to 1Endowment7huUesEXRuWgEXfxHgxvZHfK, bitcoin cash donations to 1LifeboatVPg24QghZ73Dzrx8AxcJLCnoA, bytecoin donations to 27Ztk296eht7kvkuSWBnSHFkyJuBz12aUQD3JGAB9TzfTmij
vGVsB4626pMkC7ZPHvM8oNBxPSW6NGjtvvY4hdTSEzxz3NQ, CryptogenicBullion to 5oLifeboahKRRBegBet6wKknJXKgZaC2n1, dash to XoLifeboayhU2V4cZjzEWrVY1bs4EXRzVj, ethereum to 0xbadc0de027c5c1aa8917db7c93aec6c4281f6eca, litecoin to LLifeboat89KCQKb9XEH2XGAQqbr2KnUp9, monero at 42BToafqtFZDrGPVzWrTCoG2fd2joMvK4BGV3tiQFnE1HhyQ
5Ug1QzRNLL5xFHyNHc6rLZbZ8GpqV1V41FzNsaxtPbg2LJd, namecoin to N2LifeboatgP2N6eh7SoKKLkfYkJevhYYg, noblecoin to 9oLifeboaAJZD99ewSfEadFQuYRxEwrRFu, NXT to 15218141642686933204, peercoin to PLifeboatRZmTjrLMs6Cpa14Sqc8Nwyq6p, solarcoin to 8LifeboatJu4KqsL5NCtmd45dkD2aFK59X, and Zcash to t1Lifeboat7EQg4jzdUdgDjPkbPqnkWy3LP. You can also donate American Express membership reward points.

Learn about the A-500!

Lifeboat Foundation respects your privacy! We will not use your optional phone number to contact you for any reason other than to correct a problem relating to your membership processing.

Every donor can provide a short testimonial with their donation which will show up on our donors page. If you haven’t already created a testimonial please consider the ability of your words to help others reach the same conclusion you did. If we all work together, the day when humanity adopts the increasingly powerful technologies of genetics, nanotechnology, and robotics/AI safely will arrive that much sooner.

Privacy Statement:

Lifeboat Foundation will NOT reveal your personal contact info or other sensitive data to third parties, nor will we use it for spamming. Read our privacy policy for details. Amazon and PayPal have different privacy policies; Lifeboat Foundation has no control over what these companies can do with your personal information. You should read their privacy policies.