Toggle light / dark theme

Researchers have successfully demonstrated the UK’s first long-distance ultra-secure transfer of data over a quantum communications network, including the UK’s first long-distance quantum-secured video call.

The team, from the Universities of Bristol and Cambridge, created the network, which uses standard fiber-optic infrastructure, but relies on a variety of quantum phenomena to enable ultra-secure data transfer.

The network uses two types of quantum key distribution (QKD) schemes: “unhackable” encryption keys hidden inside particles of light; and distributed entanglement: a phenomenon that causes quantum particles to be intrinsically linked.

What do smart bandages, ocean-powered sensors, and quantum biology have in common? They’re all part of Dr. Leonard Tender’s work at DARPA. On the latest episode of Voices from DARPA, he discusses his fascinating research in the Biological Technologies Office and how these innovations are shaping the future of national security.

A research team has developed the world’s first quantum microsatellite and demonstrated real-time quantum key distribution (QKD) between the satellite and multiple compact, mobile ground stations.

The research, led by Pan Jianwei, Peng Chengzhi, and Liao Shengkai from USTC, jointly with the Jinan Institute of Quantum Technology, Shanghai Institute of Technical Physics, the Innovation Academy for Microsatellites of the Chinese Academy of Sciences, and Stellenbosch University of South Africa, is published in Nature.

Quantum secure communication is fundamental to national information security and socioeconomic development. QKD, a communication method with proven unconditional security, significantly enhances data transmission security. While fiber-based QKD networks have achieved regional implementation, their practical application over long distances remains constrained by signal loss and limited coverage. Satellite-based systems present a viable solution through free-space communication, potentially enabling QKD on a global scale.

Qwake Technologies is working with the Department of Homeland Security to test out the device in a real-world environment. 80 fire departments across the country will receive the device to test out. Austin Fire Department and Round Rock Fire Department are both part of this program.

So far, ten of the eighty departments have gotten the technology. Each C-Thru costs about $8,500, which Cossman said is less than the current generation of walkie-talkies used by many departments. The devices are not currently for sale.

“It is the first iPhone for the fire industry. Like this is a watershed moment,” Cossman said.

The Model Context Protocol (MCP) is an open standard (open-sourced by Anthropic) that defines a unified way to connect AI assistants (LLMs) with external data sources and tools. Think of MCP as a USB-C port for AI applications – a universal interface that allows any AI assistant to plug into any compatible data source or service. By standardizing how context is provided to AI models, MCP breaks down data silos and enables seamless, context-rich interactions across diverse systems.

In practical terms, MCP enhances an AI assistant’s capabilities by giving it controlled access to up-to-date information and services beyond its built-in knowledge. Instead of operating with a fixed prompt or static training data, an MCP-enabled assistant can fetch real-time data, use private knowledge bases, or perform actions on external tools. This helps overcome limitations like the model’s knowledge cutoff and fixed context window. It is observed that simply “stuffing” all relevant text into an LLM’s prompt can hit context length limits, slow responses, and become costly. MCP’s on-demand retrieval of pertinent information keeps the AI’s context focused and fresh, allowing it to incorporate current data and update or modify external information when permitted.

Another way MCP improves AI integration is by unifying the development pattern. Before MCP, connecting an AI to external data often meant using bespoke integrations or framework-specific plugins. This fragmented approach forced developers to re-implement the same tool multiple times for different AI systems. MCP eliminates this redundancy by providing one standardized protocol. An MCP-compliant server (tool integration) can work with any MCP-compliant client (AI application). In short, MCP lets you “write once, use anywhere” when adding new data sources or capabilities to AI assistants. It brings consistent discovery and usage of tools and improved security. All these benefits make MCP a powerful foundation for building more capable and extensible AI assistant applications.

A team of researchers from University of Toronto Engineering has discovered hidden multi-dimensional side channels in existing quantum communication protocols.

The new side channels arise in quantum sources, which are the devices that generate the —typically photons—used to send secure messages. The finding could have important implications for quantum security.

“What makes quantum communication more secure than classical communication is that it makes use of a property of quantum mechanics known as conjugate states,” says Ph.D. student Amita Gnanapandithan, lead author on a paper published in Physical Review Letters.

Nuclear fusion is a source of great hope for future energy security, with this field being explored in research reactors around the world. Accurately detecting their performance requires measurement systems that supply valid data even under extreme conditions. And the centerpiece of those systems are the bolometers from the Fraunhofer Institute for Microengineering and Microsystems IMM. Experts from the institute will be presenting their sophisticated sensors at the joint Fraunhofer booth (Hall 2, Booth B24) at this year’s Hannover Messe trade show from March 31 to April 4.

Fusion technology could be the solution to the increasing energy needs of the growing global population, but it is a highly demanding technology. The current challenge is to carry out experiments that produce more energy than they consume. To accurately capture advances in this field, specialists need exceptionally sensitive measuring instruments to analyze and control the complex processes taking place inside the reactors. Determining how much power is emitted from the fusion plasma is crucial to this.

Hackers are utilizing the WordPress mu-plugins (“Must-Use Plugins”) directory to stealthily run malicious code on every page while evading detection.

The technique was first observed by security researchers at Sucuri in February 2025, but adoption rates are on the rise, with threat actors now utilizing the folder to run three distinct types of malicious code.

“The fact that we’ve seen so many infections inside mu-plugins suggests that attackers are actively targeting this directory as a persistent foothold,” explains Sucuri’s security analyst Puja Srivastava.

Three security bypasses have been discovered in Ubuntu Linux’s unprivileged user namespace restrictions, which could be enable a local attacker to exploit vulnerabilities in kernel components.

The issues allow local unprivileged users to create user namespaces with full administrative capabilities and impact Ubuntu versions 23.10, where unprivileged user namespaces restrictions are enabled, and 24.04 which has them active by default.

Linux user namespaces allow users to act as root inside an isolated sandbox (namespace) without having the same privileges on the host.