Toggle light / dark theme

Superconductivity—the ability of some materials to conduct electricity with no energy loss—holds immense promise for new technologies from lossless power grids to advanced quantum devices.

A publication in Physical Review Letters by researchers at the Stanford Institute for Materials and Energy Sciences (SIMES) at the Department of Energy’s SLAC National Accelerator Laboratory sheds light on an outstanding mystery in the study of superconductivity: high-temperature superconductivity in cuprates.

Doubling down on results from a previous SLAC study, the paper provides further evidence that the Hubbard model—the leading theory for describing strong correlations between electrons in quantum materials—fails to explain in cuprates, even in simplified, one-dimensional systems.

Superconductivity is a quantum property of materials entailing an electrical resistance of zero at very low temperatures. In some materials, multiple electronic bands are known to contribute to the emergence of superconductivity, leading to multiple superconducting energy gaps. This phenomenon is referred to as multiband superconductivity.

Researchers at Lund University in Sweden, Institut Laue Langevin in France and other institutes in Europe recently carried out a study aimed at better understanding the multiband superconductivity emerging in the transition metal dichalcogenide 2H-NbSe2, which exhibits a vortex lattice when exposed to a magnetic field.

Their findings, published in Physical Review Letters, unveil two key contributions to the observed in this material.

In answer, the team needed to develop an affordable catalyst that could improve the salty electrode. For reference, when batteries operate, ions move between the anode and cathode through the electrolyte, per a U.S. Department of Energy description.

This is where wood waste and urine enter the lab, replacing platinum as a catalyst. The UNIST creation facilitates effective electrochemical reactions and quick discharges. The experts used lignin, abundant in wood and used to make paper and biofuels, in combination with urea. Urea is a nitrogen-rich substance found in wastewater, UNIST reported.

“Conventional electrocatalysts, primarily noble metals, are scarce and expensive. In this context, carbon materials derived from biowaste have garnered considerable attention,” according to the abstract.

The Korea Electrotechnology Research Institute (KERI) and the Korea Institute of Materials Science (KIMS) have jointly developed spray drying technology-based high-performance dry electrode manufacturing technology for the realization of high-capacity secondary batteries. The study is published in the Chemical Engineering Journal.

Secondary battery electrodes are made by mixing active materials that store electrical energy, conductive additives that help the flow of electricity, and binders which act as a kind of adhesive. There are two methods for mixing these materials: the wet process, which uses solvents, and the dry process, which mixes solid powders without solvents.

The dry process is considered more environmentally friendly than the wet process and has gained significant attention as a technology that can increase the energy density of secondary batteries. However, until now, there have been many limitations to achieving a uniform mixture of active materials, conductive additives, and binders in the dry process.

Quantum systems are known to be prone to dissipation, a process that entails the irreversible loss of energy and that is typically linked to decoherence. Decoherence, or the loss of coherence, occurs when interactions between a quantum system and its environment cause a loss of coherence, which is ultimately what allows quantum systems to exist in a superposition of states.

While dissipation is generally viewed as a source of decoherence in , researchers at Tsinghua University recently showed that it could also be leveraged to study strongly correlated quantum matter.

Their paper, published in Nature Physics, introduces a new method to intrinsic quantum many-body correlations and demonstrates its potential for studying the dissipative dynamics in strongly correlated one-dimensional (1D) quantum gases.

A team of scientists has succeeded in creating a copper-free superconducting material operating at record temperatures. This breakthrough could transform our approach to electronic and energy technologies.

Researchers at the National University of Singapore synthesized a copper-free superconducting oxide that operates at around 40 K (−233°C) under ambient pressure. This nickel-based material opens new perspectives for understanding high-temperature superconductivity. The results were published in Nature, marking a key milestone since the discovery of copper oxides in 1987.

However, moderately significant changes have only been achieved under equilibrium conditions and at low temperatures. Significant differences at ambient temperatures, which are essential for applications, have so far been lacking.

For the first-ever time in collaboration with the theory groups of Angel Rubio (Max-Planck Institute, Hamburg) and Pascal Ruello (Université de Le Mans), EPFL scientists were able to control the excitonic properties using acoustic waves.

Scientists launched a high-frequency, large-amplitude acoustic wave in a material using ultrashort laser pulses. Doing this allowed them to manipulate the exciton properties at high speed. This astounding outcome was reached on titanium dioxide at room temperature, a cheap and abundant semiconductor that is used in a wide variety of light-energy conversion technologies, for example, photovoltaics, photocatalysis, and transparent conductive substrates.