Toggle light / dark theme

Unexpected crises or events, such as the COVID-19 pandemic or natural disasters, can cause disruptions to a city’s economy. For instance, forcing businesses to temporarily close or hindering their daily operations. As businesses often rely on each other, changes in the operation of one company can cause ripple effects, like influencing its suppliers, distributors or other businesses it depends on.

To explore the widespread economic impact of shocks and adverse events, past studies primarily examined the proximity between businesses, assuming that businesses are primarily connected to nearby companies or establishments. However, some findings suggest that people’s movements between businesses (i.e., behavior-based dependencies) also contribute to the resilience of cities following economic disruptions.

These dependencies are essentially relationships between businesses shaped by the behavior and habits of shared customers. For example, if a tech company is forced to close its offices, this might impact not only other nearby restaurants, but also gyms or other establishments located in different parts of a , which some employees typically visit before or after work.

In today’s AI news, a new $500 billion, private sector investment to build artificial intelligence infrastructure in the US, with Oracle, ChatGPT creator OpenAI, and Japanese conglomerate SoftBank among those committing to the project. The joint venture, called Stargate, is expected to begin with a data center project in Texas.

In other advancements, Perplexity has launched an aggressive bid to capture the enterprise AI search market, unveiling Sonar, an API service that outperforms offerings from Google, OpenAI and Anthropic on key benchmarks while also undercutting their prices. Perplexity — now valued at $9 billion — directly challenges larger competitors.

And, Santee Cooper, the big power provider in South Carolina, has tapped financial advisers to look for buyers that can restart construction on a pair of nuclear reactors that were mothballed years ago. The state-owned utility is betting interest will be strong, with tech giants such as Amazon and Microsoft in need of clean energy to fuel AI.

Then, Google is making a fresh investment of more than $1 billion into AI startup Anthropic, the Financial Times reported on Wednesday. This comes after Reuters and other media reported earlier in January that Anthropic was nearing a $2 billion fundraise in a round, led by Lightspeed Venture Partners, valuing the firm at about $60 billion.

In videos, Indeed CEO Chris Hyams, and Stanford Digital Economy Lab Director Erik Brynjolfsson, join Bloomberg’s Work for a discussion on the key trends impacting employees and employers in 2025 and beyond.

The Stargate Project is a new company which intends to invest $500 billion over the next four years building new AI infrastructure for OpenAI in the United States. We will begin deploying $100 billion immediately. This infrastructure will secure American leadership in AI, create hundreds of thousands of American jobs, and generate massive economic benefit for the entire world. This project will not only support the re-industrialization of the United States but also provide a strategic capability to protect the national security of America and its allies.

The initial equity funders in Stargate are SoftBank, OpenAI, Oracle, and MGX. SoftBank and OpenAI are the lead partners for Stargate, with SoftBank having financial responsibility and OpenAI having operational responsibility. Masayoshi Son will be the chairman.

Arm, Microsoft, NVIDIA, Oracle, and OpenAI are the key initial technology partners. The buildout is currently underway, starting in Texas, and we are evaluating potential sites across the country for more campuses as we finalize definitive agreements.

Trump—flanked by larry ellison, sam altman, & masayoshi son—announces project stargate.

Trump announces Project Stargate, a $500 billion initiative backed by major tech leaders, aimed at revolutionizing U.S. AI infrastructure, creating jobs, and enhancing healthcare through advanced technologies. AI Infrastructure and Economic Impact.

🏗️Project Stargate, a $500+ billion AI infrastructure initiative, aims to construct colossal data centers and physical campuses across the US, potentially creating over 100,000 American jobs.

🌐The project will build physical and virtual infrastructure to power next-generation AI advancements, with Oracle, SoftBank, and Microsoft as key partners, establishing a new US-centered industry. ## Healthcare Applications.

The age of agentic AI has arrived. Spanning the virtual and physical realms, we stand at a pivotal moment where human ingenuity will be amplified by intelligent machines. This convergence of agentic AI, intelligent software agents capable of independent learning. actions and tasks, with physical AI, encompassing robots and machines interacting with the physical world, is poised to fundamentally reshape the global economic landscape.


We are entering a new era where individuals and businesses will interact with and manage a network of AI agents.

By the end of 2024, artificial intelligence (AI) and machine learning (ML) had established themselves as the main transformative forces behind recent technological advancements in healthcare. A report by Silicon Valley Bank states that in 2024, the amount of VC investment in health AI in the U.S. was expected to reach $11.1 billion, the highest number since 2021.

In my experience, the main driver behind the AI investment and adoption craze is the measurable value technology offers healthcare providers. A 2023 National Bureau of Economic Research study indicates that integrating AI can save the U.S. healthcare system up to $360 billion annually. A 2023 survey by the AMA shows that physicians see AI as a way to reduce the administrative burden of documentation (54%) and improve workflow efficiency (69%).

But do these positive changes reflect on the quality of care, and do patients benefit from AI and ML-powered solutions? In this article, I share my take on the transformative potential of AI and ML in the modern care delivery process.

Artificial neural networks (ANNs) have brought about many stunning tools in the past decade, including the Nobel-Prize-winning AlphaFold model for protein-structure prediction [1]. However, this success comes with an ever-increasing economic and environmental cost: Processing the vast amounts of data for training such models on machine-learning tasks requires staggering amounts of energy [2]. As their name suggests, ANNs are computational algorithms that take inspiration from their biological counterparts. Despite some similarity between real and artificial neural networks, biological ones operate with an energy budget many orders of magnitude lower than ANNs. Their secret? Information is relayed among neurons via short electrical pulses, so-called spikes. The fact that information processing occurs through sparse patterns of electrical pulses leads to remarkable energy efficiency.

In a significant step toward creating a sustainable and circular economy, Rice University researchers have published a study in the journal Carbon demonstrating that carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. This discovery positions CNT fibers as a sustainable alternative to traditional materials like metals, polymers and the much larger carbon fibers, which are notoriously difficult to recycle.

“Recycling has long been a challenge in the materials industry—metals recycling is often inefficient and energy-intensive, polymers tend to lose their properties after reprocessing and carbon fibers cannot be recycled at all, only downcycled by chopping them up into short pieces,” said corresponding author Matteo Pasquali, director of Rice’s Carbon Hub and the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering and Chemistry.

“As CNT fibers are being scaled up, we asked whether and how these new materials could be recycled in the future so as to proactively avoid waste management problems that emerged as other engineered materials reached large-scale use. We expected that recycling would be difficult and would lead to significant loss of properties. Surprisingly, we found that fibers far exceed the recyclability potential of existing engineered materials, offering a solution to a major environmental issue.”

The past year, 2024, witnessed an array of groundbreaking technological advancements that fundamentally reshaped industries and influenced the global economy. Technology trends like the development of Industry LLMs, Sustainable Computing, and the Augmented Workforce drove innovation, fostered efficiency, and accelerated the pace of Digital Transformation across sectors such as Healthcare, Finance, and Manufacturing. These developments set the stage for even more disruptive Technology Trends in 2025.

This year is set to bring transformative changes to the business landscape, driven by emerging trends that require enterprises to adopt the right technologies, reskill their workforce, and prioritize sustainability. By embracing these Technology Trends, businesses can shape their objectives, remain competitive, and build resilience. However, Success in this rapidly evolving landscape depends not just on adopting these technologies but also on strategically leveraging them to drive innovation and growth.