Toggle light / dark theme

The Telangana state government in South India, in collaboration with various agricultural aid organizations and technology companies, launched a groundbreaking project known as “Saagu Baagu.” This initiative focused on assisting 7,000 chilli farmers with AI-powered tools, marking a significant step…


Saagu Baagu shows AI’s growing role in agriculture, helping developing-world farmers achieve sustainable and profitable practices.

A collaborative study by the UTokyo-KI LINK program, headed by Camilla Björkegren from Karolinska Institutet, Kristian Jeppsson and Katsuhiko Shirahige from The University of Tokyo shows that a protein complex named Smc5/6 binds DNA structures called positive supercoils. These form when the chromosomal DNA double helix folds onto itself due to overtwisting caused by transcription, which is the first step in gene expression.

The study presents in vivo data indicating that Smc5/6 binds to the base of chromosome loops in regions that contain high levels of transcription-induced positive supercoils. The complex is also shown to control the three-dimensional (3D) organization of these regions.

Computational machine learning provides additional results supporting that transcription-induced positive supercoils determine the chromosomal binding pattern of Smc5/6. Finally, in vitro single molecule analysis, performed by the team of Dr. Eugene Kim at Max Planck Institute in Frankfurt, provides direct evidence that Smc5/6 preferentially binds positive DNA supercoils.

Information is a valuable commodity. And thanks to technology, there are millions of terabytes of it online.

Artificial intelligence (AI) tools such as ChatGPT are now managing this information on our behalf – collating it, summarising it, and presenting it back to us.

But this “outsourcing” of information management to AI – convenient as it is – comes with consequences. It can influence not only what we think, but potentially also how we think.

Researchers at ETH Zurich have developed lighter, safer artificial muscles that outshine their predecessors. These advanced actuators boast a unique shell structure and utilize high-permittivity ferroelectric material, storing significant electrical energy.

Operating at lower voltages, the new design offers enhanced safety, waterproofing, and durability. The team claims that the innovation marks a leap forward by enabling safer, more versatile artificial muscles that herald a new era in robotics and prosthetics.

Dubbed HALVE actuators, the new artificial muscles emerge from the collaboration of researchers led by robotics professor Robert Katzschmann at ETH Zurich. HALVE, short for “hydraulically amplified low-voltage electrostatic,” signifies a paradigm shift in actuator design, according to the team.

Deloitte’s Global Generative AI Innovation Leader Nitin Mittal and Tomorrow CEO Mike Walsh explore the Fifth Industrial Revolution in which the catalyst for societal transformation is the augmentation and expansion of human intelligence.

Given the recency of the Fourth Industrial Revolution, it might be a surprise that we are on the verge of an entirely new one. Rapid progress in computation, connectivity, and artificial intelligence (AI)—accelerated by the COVID-19 pandemic—has brought forward the timeline for transformation. While prior industrial revolutions were premised on gains in operational efficiency, the next revolution will be powered by minds, not just machines—where the catalyst for societal transformation is the augmentation and expansion of human intelligence.

In the future, soft robots will be able to perform tasks that cannot be done by conventional robots. These soft robots could be used in terrain that is difficult to access and in environments where they are exposed to chemicals or radiation that would harm electronically controlled robots made of metal. This requires such soft robots to be controllable without any electronics, which is still a challenge in development.

A research team at the University of Freiburg has now developed 3D-printed pneumatic logic modules that control the movements of soft robots using air pressure alone. These modules enable logical switching of the air flow and can thus imitate electrical control.

The modules make it possible for the first time to produce flexible and electronics-free soft robots entirely in a 3D printer using conventional filament printing material.

The organoids are the size of grain of sand and a special robot is used to screen which treatment kills off the tumour more effectively.

It helps take the guesswork out of treating advanced bowel cancer which can be difficult to beat.

“Each time you give a patient an ineffective treatment, you lose two to three months on something that won’t work,” Gibbs said.

Researchers have developed an ingenious air-powered soft valve circuit system devoid of electronics, showcasing its utility in a drink dispenser and its durability as a car drives over it.

The 3D-printed valve system showcases how well soft devices without electronics can work, even when facing challenges that could turn off regular robots.

According to reseachers at the University of Freiburg, its integration into everyday applications heralds a new era in robust and adaptable robotics. Soft circuit devices, which are flexible and don’t use metal, can handle damage much better than those with delicate electronics. They can survive being crushed or exposed to harsh chemicals without breaking.