Menu

Blog

Archive for the ‘quantum physics’ category: Page 673

May 24, 2018

Using the K computer, scientists predict exotic “di-Omega” particle

Posted by in categories: computing, cosmology, mathematics, particle physics, quantum physics

Based on complex simulations of quantum chromodynamics performed using the K computer, one of the most powerful computers in the world, the HAL QCD Collaboration, made up of scientists from the RIKEN Nishina Center for Accelerator-based Science and the RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) program, together with colleagues from a number of universities, have predicted a new type of “dibaryon”—a particle that contains six quarks instead of the usual three. Studying how these elements form could help scientists understand the interactions among elementary particles in extreme environments such as the interiors of neutron stars or the early universe moments after the Big Bang.

Particles known as “baryons”—principally protons and neutrons—are composed of three quarks bound tightly together, with their charge depending on the “color” of the quarks that make them up. A dibaryon is essentially a system with two baryons. There is one known dibaryon in nature—deuteron, a deuterium (or heavy-hydrogen) nucleus that contains a proton and a that are very lightly bound. Scientists have long wondered whether there could be other types of dibaryons. Despite searches, no other dibaryon has been found.

The group, in work published in Physical Review Letters, has now used powerful theoretical and computational tools to predict the existence of a “most strange” dibaryon, made up of two “Omega baryons” that contain three strange quarks each. They named it “di-Omega”. The group also suggested a way to look for these strange through experiments with heavy ion collisions planned in Europe and Japan.

Read more

May 22, 2018

Quantum dots made from tea leaves lay waste to lung cancer cells

Posted by in categories: health, quantum physics, solar power, sustainability

Full of antioxidants and vitamins, tea is pretty good for you, and green tea extracts have even been used as effective carriers for cancer drugs. New research led by Swansea University has found a novel way to wring more health benefits out of the stuff, by making quantum dots from tea leaves and using them to slow the growth of lung cancer cells.

Quantum dots are semiconductor particles so small they exhibit strange electrical and optical properties, such as the ability to fluoresce in different colors, or help with certain chemical reactions. Their glowing properties mean they’re showing up in TVs and solar cells, and in medical applications as biomarkers to help doctors precisely locate tumors. They’re also being used to treat cancer, fight antibiotic-resistant bacteria and convert CO2 into liquid fuels.

The problem is, manufacturing them can be a costly and complicated process, and the end results can be toxic. So the Swansea team, along with researchers from Bharathiar University and K. S. Rangasamy College of Technology, set about making quantum dots out of humble tea leaves.

Read more

May 21, 2018

How NASA Will Unlock the Secrets of Quantum Mechanics Aboard the ISS

Posted by in categories: particle physics, quantum physics, space

An Antares rocket launched from Virginia before sunrise this morning and is on its way to the International Space Station. Its 7,400 pounds of cargo include an experiment that will chill atoms to just about absolute zero—colder than the vacuum of space itself.

The Cold Atom Laboratory (CAL) is set to create Bose-Einstein condensates on board the ISS. But what’s a Bose-Einstein condensate? And why make it in space?

“Essentially, it’s going to allow us to do different kinds of things than we’d be able to do on Earth,” Gretchen Campbell, co-director of the University of Maryland’s Joint Quantum Institute, told Gizmodo.

Continue reading “How NASA Will Unlock the Secrets of Quantum Mechanics Aboard the ISS” »

May 21, 2018

A German Team Is Now Trying to Make the ‘Impossible’ EmDrive Engine

Posted by in categories: quantum physics, space travel

German physicists launched the SpaceDrive project to explore possible sources of error in EmDrive experiments. Their first experiment identified a possible source of false positives in past successful EmDrive tests.

Read more

May 19, 2018

Google, Alibaba Spar Over Timeline for ‘Quantum Supremacy’

Posted by in categories: computing, quantum physics

Google says it expects to reach an important milestone for quantum computing this year. Not so fast, says Alibaba.

Read more

May 19, 2018

How the nature of cause and effect will determine the future of quantum technology

Posted by in categories: business, quantum physics

Business Impact

How the nature of cause and effect will determine the future of quantum technology.

An unprecedented, global-scale test of one of quantum theory’s most counterintuitive predictions sheds new light on the nature of reality and how we can exploit it with quantum technologies.

Continue reading “How the nature of cause and effect will determine the future of quantum technology” »

May 17, 2018

This physicist’s ideas of time will blow your mind

Posted by in categories: information science, mathematics, quantum physics

Time feels real to people. But it doesn’t even exist, according to quantum physics. “There is no time variable in the fundamental equations that describe the world,” theoretical physicist Carlo Rovelli tells Quartz.

If you met him socially, Rovelli wouldn’t assault you with abstractions and math to prove this point. He’d “rather not ruin a party with physics,” he says. We don’t have to understand the mechanics of the universe to go about our daily lives. But it’s good to take a step back every once in a while.

“Time is a fascinating topic because it touches our deepest emotions. Time opens up life and takes everything away. Wondering about time is wondering about the very sense of our life. This is [why] I have spent my life studying time,” Rovelli explains.

Continue reading “This physicist’s ideas of time will blow your mind” »

May 17, 2018

Achieving scalability in quantum computing

Posted by in categories: computing, quantum physics

While a variety of quantum systems exist today, many are unable to scale to solve some of the world’s most challenging problems. Explaining the real-world obstacles of building a quantum system that scales, this post explores how Microsoft addresses these challenges through a topological qubit.

Read more

May 14, 2018

Deeper understanding of quantum chaos may be the key to quantum computers

Posted by in categories: computing, particle physics, quantum physics

New research gives insight into a recent experiment that was able to manipulate an unprecedented number of atoms through a quantum simulator. This new theory could provide another step on the path to creating the elusive quantum computers.

Read more

May 14, 2018

New quantum probability rule offers novel perspective of wave function collapse

Posted by in category: quantum physics

Quantum theory is based heavily on probabilities, since measuring a quantum system doesn’t produce the same outcome every time, but instead yields one of many outcomes that each occur with a certain probability. Now in a new paper, physicists have presented a new quantum probability rule for assigning probabilities to measurement outcomes, or events, that essentially combines two of the most important quantum probability rules (the Born rule and the wave function collapse rule) into one.

The physicists, Sally Shrapnel, Fabio Costa, and Gerard Milburn, at The University of Queensland in Australia, have published a paper on the new rule in the New Journal of Physics.

One of the most important probability rules in quantum is the Born rule, which gives the probability that a measurement yields a certain event. However, things get a little bit more complicated when predicting consecutive events. Although in classical scenarios it’s possible to assign joint probabilities to consecutive events using conditioning, in quantum scenarios this is not possible since each measurement necessarily disturbs the system. So in quantum mechanics, the state must be updated with this new information after every measurement.

Continue reading “New quantum probability rule offers novel perspective of wave function collapse” »