Menu

Blog

Archive for the ‘quantum physics’ category: Page 62

Jul 17, 2024

Quantum microscopy study makes electrons visible in slow motion

Posted by in category: quantum physics

Physicists at the University of Stuttgart under the leadership of Prof. Sebastian Loth are developing quantum microscopy which enables them for the first time to record the movement of electrons at the atomic level with both extremely high spatial and temporal resolution.

Jul 17, 2024

Unconventional Superconductivity: The Peculiar Case of Griffith Singularity

Posted by in categories: quantum physics, singularity

A new paper explores the quantum Griffith singularity in phase transitions, focusing on recent studies that could expand our understanding of high-temperature superconductivity in unconventional materials.

Exploring exotic quantum phase transitions has long been a key focus in condensed matter physics. A critical phenomenon in a phase transition is determined entirely by its universality class, which is governed by spatial and/or order parameters and remains independent of microscopic details. Quantum phase transitions, a subset of phase transitions, occur due to quantum fluctuations and are tuned by specific system parameters at the zero-temperature limit.

The superconductor-insulator/metal phase transition is a classic example of quantum phase transition, which has been intensely studied for more than 40 years. Disorder is considered one of the most important influencing factors, and therefore has received widespread attention. During the phase transitions, the system usually satisfies scaling invariance, so the universality class will be characterized by a single critical exponent. In contrast, the peculiarity of quantum Griffith singularity is that it breaks the traditional scaling invariance, where exotic physics emerges.

Jul 16, 2024

Strange Motion of Neutrons Proves Nature Is Fundamentally Bizarre

Posted by in categories: particle physics, quantum physics, space

At the very smallest scales, our intuitive view of reality no longer applies. It’s almost as if physics is fundamentally indecisive, a truth that gets harder to ignore as we zoom in on the particles that pixelate our Univerrse.

In order to better understand it, physicists had to devise an entirely new framework to place it in, one based on probability over certainty. This is quantum theory, and it describes all sorts of phenomena, from entanglement to superposition.

Yet in spite of a century of experiments showing just how useful quantum theory is at explaining what we see, it’s hard to shake our ‘classical’ view of the Universe’s building blocks as reliable fixtures in time and space. Even Einstein was forced to ask his fellow physicist, “Do you really believe the Moon is not there when you are not looking at it?”

Jul 16, 2024

Illinois lands federal partnership to further develop quantum projects

Posted by in categories: computing, quantum physics

Gov. J.B. Pritzker on Tuesday plans to announce a major partnership with the U.S. Department of Defense’s research and development agency to further expand quantum research in Illinois.

The Defense Advanced Research Projects Agency, or DARPA, will take residency on the state’s quantum campus to establish a program where quantum computing prototypes will be tested. The location of the campus is expected to be announced soon.

According to DARPA, the goal of the “Quantum Benchmarking Initaitive,” or QBI, will be to evaluate and test quantum computing claims and “separate hype from reality.”

Jul 16, 2024

Breakthrough in quantum microscopy: Researchers are making electrons visible in slow motion

Posted by in categories: materials, quantum physics

Physicists at the University of Stuttgart under the leadership of Prof. Sebastian Loth are developing quantum microscopy which enables them for the first time to record the movement of electrons at the atomic level with both extremely high spatial and temporal resolution. Their method has the potential to enable scientists to develop materials in a much more targeted way than before.

The researchers have published their findings in the journal Nature Physics (“Terahertz spectroscopy of collective charge density wave dynamics at the atomic scale”).

“With the method we developed, we can make things visible that no one has seen before,” says Prof. Sebastian Loth, Managing Director of the Institute for Functional Matter and Quantum Technologies (FMQ) at the University of Stuttgart. “This makes it possible to settle questions about the movement of electrons in solids that have been unanswered since the 1980s.” However, the findings of Loth’s group are also of very practical significance for the development of new materials.

Jul 15, 2024

New techniques enhance brightness and control of quantum defects in nanodiamonds

Posted by in categories: nanotechnology, quantum physics

Researchers develop methods to dramatically increase light emission from nitrogen-vacancy centers in nanodiamonds, advancing quantum sensing and bioimaging applications.

Jul 15, 2024

How a Twist in Physics Could Change Technology Forever

Posted by in categories: particle physics, quantum physics

Physicists at the University of Konstanz have discovered a way to imprint a previously unseen geometrical form of chirality onto electrons using laser light, creating chiral coils of mass and charge.

This breakthrough in manipulating electron chirality has vast implications for quantum optics, particle physics, and electron microscopy, paving the way for new scientific explorations and technological innovations.

Understanding Chirality and Its Implications.

Jul 15, 2024

Faster Than Light: New Dark Matter Findings Challenge Classical Physics

Posted by in categories: cosmology, particle physics, quantum physics, space travel

Dive into the world of tachyons, the elusive particles that might travel faster than light and hold the key to understanding dark matter and the universe’s expansion. Join us as we explore groundbreaking research that challenges our deepest physics laws and hints at a universe far stranger than we ever imagined. Don’t miss out on this thrilling cosmic journey!

Chapters:
00:00 Introduction.
00:39 Racing Beyond Light.
03:26 The Tachyon Universe Model.
05:57 Beyond Cosmology: Tachyons’ Broader Impact.
08:31 Outro.
08:44 Enjoy.

Continue reading “Faster Than Light: New Dark Matter Findings Challenge Classical Physics” »

Jul 14, 2024

Quantum Revelations: Unveiling New Layers of the Higgs Boson

Posted by in categories: particle physics, quantum physics

New research confirms the Standard Model’s predictions about the Higgs boson while suggesting future data may reveal unknown aspects of particle physics.

The Higgs boson was discovered in the detectors of the Large Hadron Collider a dozen or so years ago. It has proved to be a particle so difficult to produce and observe that, despite the passage of time, its properties are still not known with satisfactory accuracy. Now we know a little more about its origin, thanks to the just-published achievement of an international group of theoretical physicists with the participation of the Institute of Nuclear Physics of the Polish Academy of Sciences.

Higgs Boson Discovery

Jul 14, 2024

Pioneering Study Reveals 3D Quantum Hall Effects in Weyl Acoustic Crystals

Posted by in category: quantum physics

A new study has demonstrated the three-dimensional quantum Hall effect in acoustic waves using a Weyl acoustic crystal, marking the first observation of one-dimensional edge states and opening avenues for advanced acoustic device development.

The quantum Hall effect (QHE) stands as a landmark discovery in condensed matter physics, paving the way for the exploration of topological physics. Advancing QHE into three dimensions presents an exciting yet formidable challenge. The complication stems from the fact that, in three dimensions, Landau levels evolve into bands along the magnetic field direction, which obstructs the formation of bulk gaps.

Recently, a feasible scheme has been proposed in Weyl semimetals, whose Fermi arc states on opposite surfaces are connected through the bulk Weyl points to form a complete Fermi loop, and under the magnetic field, one-dimensional edge states are induced on the boundary of the opposite surface. However, the unique edge states have yet to be experimentally observed.

Page 62 of 836First5960616263646566Last