Menu

Blog

Archive for the ‘quantum physics’ category: Page 319

Feb 8, 2023

Another step towards practical quantum computers

Posted by in categories: finance, quantum physics, supercomputing

Researchers from the University of Sussex and Universal Quantum have demonstrated for the first time that quantum bits (qubits) can directly transfer between quantum computer microchips and demonstrated this with record-breaking speed and accuracy. This breakthrough resolves a major challenge in building quantum computers large and powerful enough to tackle complex problems that are of critical importance to society.

Today, quantum computers operate on the 100-qubit scale. Experts anticipate millions of qubits are required to solve important problems that are out of reach of today’s most powerful supercomputers. There is a global quantum race to develop quantum computers that can help in many important societal challenges from to making fertilizer production more energy efficient and solving important problems in nearly every industry, ranging from aeronautics to the financial sector.

In the research paper, published today in Nature Communications, the scientists demonstrate how they have used a new and powerful technique, which they dub “UQ Connect,” to use electric field links to enable qubits to move from one quantum computing microchip module to another with unprecedented speed and precision. This allows chips to slot together like a jigsaw puzzle to make a more powerful quantum .

Feb 8, 2023

Optical Fibers Go Topological

Posted by in categories: computing, humor, mathematics, quantum physics

A new design for an optical fiber borrows concepts from topology to protect light from imperfections in the fiber’s light-guiding materials or from distortions in its cross section.

Using concepts from the mathematical field of topology, researchers at the University of Bath, UK, have designed an optical fiber that can robustly propagate light, even if there are variations in the properties of its light-guiding materials or in its overall geometry [1]. The team thinks that this newfound topological protection could enable advances in optical communication and photonic quantum computing.

The concept of topology is often explained using a joke about a donut and a coffee cup. A coffee cup made of rubber can be continuously twisted and stretched—no cuts need to be made—so that it takes on the shape of a donut. Even though the object’s outline changes under this transformation, its essence remains the same—it contains one hole. Thus, the quip goes, a topologist cannot tell the difference between the two things.

Feb 8, 2023

Trapped Ions Go the Distance

Posted by in category: quantum physics

Researchers have achieved long-distance entanglement between two calcium ions, each of which lies in a different building, showing that trapped ions could be used to create quantum networks.

Among the many candidate platforms for quantum-information applications, trapped-ion qubits are promising because of their long coherence times and their potential for multiqubit operations (see Viewpoint: Trapped Ions Make Impeccable Qubits). Alone, those properties are insufficient for some quantum applications, however: to build quantum communication networks, for example, requires the qubits’ delicate quantum states be shared over long distances. Demonstrations of this ability have been lacking for trapped-ion systems. Now a team led by Benjamin Lanyon at the Institute for Quantum Optics and Quantum Information, Austria, and Tracy Northup at the University of Innsbruck, Austria, have addressed this shortfall by entangling two trapped-ion qubits residing in different buildings [1].

Lanyon, Northup, and colleagues used trapped-ion qubits inside optical cavities. For each qubit, they excited the ion using a dual-wavelength laser, prompting the ion to emit a single photon. The photon’s polarization depended on which of the two laser wavelengths the ion absorbed, entangling the photon with the ion’s final state. To entangle the two ions, the team then transmitted the photon from one ion through 510 m of optical fiber to a beam splitter near the other ion, where the two photons interacted. The researchers claimed successful entanglement when they subsequently detected a pair of photons with specific individual polarizations.

Feb 8, 2023

Deep learning for quantum sensing

Posted by in categories: information science, quantum physics, robotics/AI

Quantum sensing represents one of the most promising applications of quantum technologies, with the aim of using quantum resources to improve measurement sensitivity. In particular, sensing of optical phases is one of the most investigated problems, considered key to developing mass-produced technological devices.

Optimal usage of quantum sensors requires regular characterization and calibration. In general, such calibration is an extremely complex and resource-intensive task—especially when considering systems for estimating multiple parameters, due to the sheer volume of required measurements as well as the computational time needed to analyze those measurements. Machine-learning algorithms present a powerful tool to address that complexity. The discovery of suitable protocols for algorithm usage is vital for the development of sensors for precise quantum-enhanced measurements.

A particular type of machine-learning algorithm known as “reinforcement learning” (RL) relies on an intelligent agent guided by rewards: Depending on the rewards it receives, it learns to perform the right actions to achieve the desired optimization. The first experimental realizations using RL algorithms for the optimization of quantum problems have been reported only very recently. Most of them still rely on prior knowledge of the model describing the system. What is desirable is instead a completely model-free approach, which is possible when the agent’s reward does not depend on the explicit system model.

Feb 7, 2023

N-Electron Valence Perturbation Theory with Reference Wave Functions from Quantum Computing: Application to the Relative Stability of Hydroxide Anion and Hydroxyl Radical

Posted by in categories: computing, information science, quantum physics

Quantum simulations of the hydroxide anion and hydroxyl radical are reported, employing variational quantum algorithms for near-term quantum devices. The energy of each species is calculated along the dissociation curve, to obtain information about the stability of the molecular species being investigated. It is shown that simulations restricted to valence spaces incorrectly predict the hydroxyl radical to be more stable than the hydroxide anion. Inclusion of dynamical electron correlation from nonvalence orbitals is demonstrated, through the integration of the variational quantum eigensolver and quantum subspace expansion methods in the workflow of N-electron valence perturbation theory, and shown to correctly predict the hydroxide anion to be more stable than the hydroxyl radical, provided that basis sets with diffuse orbitals are also employed.

Feb 7, 2023

Underdog technologies gain ground in quantum-computing race

Posted by in categories: computing, particle physics, quantum physics

Individual atoms trapped by optical ‘tweezers’ are emerging as a promising computational platform.

Feb 7, 2023

What Makes You You Makes the Universe: Nobel Laureate Erwin Schrödinger on Quantum Physics, Vedanta, and the Ongoing Mystery of Consciousness

Posted by in categories: alien life, quantum physics

This life of yours which you are living is not merely a piece of the entire existence, but is in a certain sense the whole.

Feb 7, 2023

Brian Greene: Quantum Gravity, The Big Bang, Aliens, Death, and Meaning | Lex Fridman Podcast #232

Posted by in categories: alien life, quantum physics

Brian Greene is a theoretical physicist. Please support this podcast by checking out our sponsors:
- The Prisoner Wine Company: https://theprisonerwine.com/lex to get 20% off & free shipping.
- Blinkist: https://blinkist.com/lex and use code LEX to get 25% off premium.
- LMNT: https://drinkLMNT.com/lex to get free sample pack.
- BetterHelp: https://betterhelp.com/lex to get 10% off.
- NI: https://www.ni.com/perspectives.

EPISODE LINKS:
Brian’s Twitter: https://twitter.com/bgreene.
Brian’s Website: http://www.briangreene.org/
Until the End of Time (book): https://amzn.to/2XuqXUi.

Continue reading “Brian Greene: Quantum Gravity, The Big Bang, Aliens, Death, and Meaning | Lex Fridman Podcast #232” »

Feb 7, 2023

An extension of FermiNet to discover quantum phase transitions

Posted by in categories: chemistry, information science, quantum physics, robotics/AI

Architectures based on artificial neural networks (ANNs) have proved to be very helpful in research settings, as they can quickly analyze vast amounts of data and make accurate predictions. In 2020, Google’s British AI subsidiary DeepMind used a new ANN architecture dubbed the Fermionic neural network (FermiNet) to solve the Schrodinger equation for electrons in molecules, a central problem in the field of chemistry.

The Schroedinger is a partial differential equation based on well-established theory of energy conservation, which can be used to derive information about the behavior of electrons and solve problems related to the properties of matter. Using FermiNet, which is a conceptually simple method, DeepMind could solve this equation in the context of chemistry, attaining very accurate results that were comparable to those obtained using highly sophisticated quantum chemistry techniques.

Researchers at Imperial College London, DeepMind, Lancaster University, and University of Oxford recently adapted the FermiNet architecture to tackle a quantum physics problem. In their paper, published in Physical Review Letters, they specifically used FermiNet to calculate the ground states of periodic Hamiltonians and study the homogenous electron gas (HEG), a simplified quantum mechanical model of electrons interacting in solids.

Feb 7, 2023

Rabi oscillations in a stretching molecule

Posted by in categories: particle physics, quantum physics

Over eighty years ago, Rabi oscillations were proposed to describe the strong coupling and population transfer in a two-level quantum system exposed to an oscillatory driving field. As compared to atoms, molecules have an extra degree of vibration, which adds an additional knob to the Rabi oscillations in light-molecule interactions. However, how such a laser-driven Rabi oscillation during the stretching of molecular bonds determines the kinetic energy release (KER) spectrum of dissociative fragments is still an open question.

In a new article published in Light: Science & Applications, a joint team of scientists, led by Professor Feng He from Shanghai Jiao Tong University and Professor Jian Wu from East China Normal University has investigated Rabi oscillations in a stretching molecule and discovered the strong-field-induced dissociation dynamics beyond the well-accepted resonant one-photon dissociation scenario. During the dissociation of the simplest molecular ion of H2+, coupled with the laser field, the electron hops between the 1sσg and 2pσu states, forming the Rabi oscillations.

The ionization-created nuclear wave packet (NWP) may propagate alternatively along the two potential energy curves towards a larger internuclear distance monotonically, termed as the rolling process, or may propagate outwards along the 2pσu curve followed by the inward propagation in the 1sσg curve and then be relaunched to 2pσu state again followed by subsequent dissociation, termed as the looping process. The rolling and looping dissociation pathways lead to different KERs of the ejected dissociative fragments, which have been verified by comparing experimental measurements with quantum simulation results.