Menu

Blog

Archive for the ‘quantum physics’ category: Page 193

Oct 30, 2023

Quantum Breakthrough: Scientists Rethink the Nature of Reality

Posted by in categories: innovation, quantum physics

Whenever measurement precision nears the uncertainty limit set by quantum mechanics, the results become dependent on the interaction dynamics between the measuring device and the system. This finding may explain why quantum experiments often produce conflicting results and may contradict basic assumptions regarding physical reality.

Two quantum physicists from Hiroshima University recently analyzed the dynamics of a measurement interaction, where the value of a physical property is identified with a quantitative change in the meter state. This is a difficult problem, because quantum theory does not identify the value of a physical property unless the system is in a so-called “eigenstate” of that physical property, a very small set of special quantum states for which the physical property has a fixed value.

The researchers solved this fundamental problem by combining information about the past of the system with information about its future in a description of the dynamics of the system during the measurement interaction, demonstrating that the observable values of a physical system depend on the dynamics of the measurement interaction by which they are observed.

Oct 30, 2023

1,000+ Qubit Quantum Computer Announced

Posted by in categories: computing, particle physics, quantum physics

California-based startup Atom Computing has announced a 1,225-qubit quantum computer, the first to break the 1,000+ barrier, which it plans to release in 2024.

Quantum bits, or qubits, are the basic units of information in quantum computing – equivalent to bits in classical computing. Unlike bits, however, qubits can exist in multiple states simultaneously, allowing them to perform calculations that would take millions of years for an ordinary computer.

Oct 30, 2023

Breaking the Quantum Limit: From Einstein-Bohr Debates to Achieving “Unattainable” Efficiency

Posted by in categories: computing, engineering, quantum physics

Researchers at the University of Stuttgart have demonstrated that a key ingredient for many quantum computation and communication schemes can be performed with an efficiency that exceeds the commonly assumed upper theoretical limit — thereby opening up new perspectives for a wide range of photonic quantum technologies.

Quantum science not only has revolutionized our understanding of nature, but is also inspiring groundbreaking new computing, communication, and sensor devices. Exploiting quantum effects in such ‘quantum technologies’ typically requires a combination of deep insight into the underlying quantum-physical principles, systematic methodological advances, and clever engineering. And it is precisely this combination that researchers in the group of Prof. Stefanie Barz at the University of Stuttgart and the Center for Integrated Quantum Science and Technology (IQST) have delivered in recent study, in which they have improved the efficiency of an essential building block of many quantum devices beyond a seemingly inherent limit.

Historical foundations: from philosophy to technology.

Oct 29, 2023

Scientists demonstrate the existence of a universal lower bound on topological entanglement entropy

Posted by in categories: computing, quantum physics

In a new study, scientists from the US and Taiwan have theoretically demonstrated the existence of a universal lower bound on topological entanglement entropy, which is always non-negative. The findings are published in the journal Physical Review Letters.

Quantum systems are bizarre and follow their own rules, with quantum states telling us everything we know about that system. Topological entanglement entropy (TEE) is a measure that provides insights into emergent non-local phenomena and entanglement in with topological properties.

Given the fundamental role of quantum entanglement in and various information applications, understanding TEE becomes essential for gaining insights into the behavior of quantum systems.

Oct 29, 2023

Physicists Say Time Travel Can Be Simulated Using Quantum Entanglement

Posted by in categories: quantum physics, time travel

A simulation offers a means of probing time travel without worrying about whether it’s actually permitted by the rules of the universe.

“Whether closed timelike curves exist in reality, we don’t know. The laws of physics that we know of allow for the existence of CTCs, but those laws are incomplete; most glaringly, we don’t have a theory of quantum gravity,” said Yunger Halpern. “Regardless of whether true CTCs exist, though, one can use entanglement to simulate CTCs, as others showed before we wrote our paper.”

Oct 28, 2023

Cybernetic Theory: Information Physics, Quantum Cosmology, Simulation Metaphysics

Posted by in categories: cosmology, evolution, neuroscience, quantum physics, singularity

Building upon the foundational paradigms outlined in The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution (2020), my latest work titled The Cybernetic Theory of Mind (2022), a Kindle eBook series published last year, serves as an extension and refinement, operating at the intersection of information physics, quantum cosmology, and simulation metaphysics. The objective is not merely to inform but to elucidate through an “explanatory” theory of everything, providing an integrative framework for a deeper understanding of reality.

#CyberneticTheory #InformationPhysics #QuantumCosmology #SimulationMetaphysics #cybernetics #QuantumGravity #SyntellectHypothesis #CyberneticTheoryofMind #TheoryofEverything #consciousness #TechnologicalSingularity #DigitalPhysics #QuantumMechanics #PhilosophyofMind #posthumanism #UniversalMind #CyberneticImmortality


The Cybernetic Theory of Mind is an explanatory TOE at the intersection of information physics, quantum cosmology and simulation metaphysics.

Continue reading “Cybernetic Theory: Information Physics, Quantum Cosmology, Simulation Metaphysics” »

Oct 28, 2023

Three-qubit computing platform is made from electron spins

Posted by in categories: computing, particle physics, quantum physics

A quantum computing platform that is capable of the simultaneous operation of multiple spin-based quantum bits (qubits) has been created by researchers in South Korea. Designed by Yujeong Bae, Soo-hyon Phark, Andreas Heinrich and colleagues at the Institute for Basic Science in Seoul, the system is assembled atom-by-atom using a scanning tunnelling microscope (STM).

\r \r.

While quantum computers of the future should be able to outperform conventional computers at certain tasks, today’s nascent quantum processors are still too small and noisy to do practical calculations. Much more must be done to create viable qubit platforms that can retain information for long enough for quantum computers to be viable.

Oct 28, 2023

A new way to erase quantum computer errors

Posted by in categories: biotech/medical, computing, quantum physics

Quantum computers of the future hold promise in solving all sorts of problems. For example, they could lead to more sustainable materials and new medicines, and even crack the hardest problems in fundamental physics. But compared to the classical computers in use today, rudimentary quantum computers are more prone to errors. Wouldn’t it be nice if researchers could just take out a special quantum eraser and get rid of the mistakes?

Reporting in the journal Nature, a group of researchers led by Caltech is among the first to demonstrate a type of quantum eraser. The physicists show that they can pinpoint and correct for mistakes in quantum computing systems known as “erasure” errors.

“It’s normally very hard to detect errors in quantum computers, because just the act of looking for errors causes more to occur,” says Adam Shaw, co-lead author of the new study and a graduate student in the laboratory of Manuel Endres, a professor of physics at Caltech. “But we show that with some careful control, we can precisely locate and erase certain errors without consequence, which is where the name erasure comes from.”

Oct 27, 2023

Scientists demonstrate electric control of atomic spin transitions

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

A new study published in Nature Communications delves into the manipulation of atomic-scale spin transitions using an external voltage, shedding light on the practical implementation of spin control at the nanoscale for quantum computing applications.

Spin transitions at the atomic scale involve changes in the orientation of an atom’s intrinsic angular momentum or spin. In the atomic context, spin transitions are typically associated with electron behavior.

In this study, the researchers focused on using electric fields to control the spin transitions. The foundation of their research was serendipitous and driven by curiosity.

Oct 27, 2023

A deep look into the dipolar quantum world

Posted by in categories: particle physics, quantum physics

In a new collaboration, two research groups, one led by Francesca Ferlaino and one by Markus Greiner, have joined force to develop an advanced quantum gas microscope for magnetic quantum matter. This state-of-the-art instrument reveals intricate dipolar quantum phases shaped by the interactions as reported in Nature.

Magnetic atoms are central to Ferlaino’s research on unexplored quantum matter. At both the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences and the Department of Experimental Physics at the University of Innsbruck, the experimental physicist and her team achieved the first Bose-Einstein condensate of erbium in 2012. In 2019, she led one of the teams observing for the first time supersolid states in ultracold quantum gases of magnetic atoms.

At Harvard University, German experimental physicist Markus Greiner is the pioneer of optical techniques allowing for the direct observation of individual atoms. Using , the Harvard team has unveiled many exotic phenomena in strongly correlated ultracold atoms, as anti-ferromagnetic phases in 2017.