Menu

Blog

Archive for the ‘quantum physics’ category: Page 19

Nov 26, 2024

Cooling with light: Exploring optical cooling in semiconductor quantum dots

Posted by in categories: energy, quantum physics

Cooling systems are an integral part of many modern technologies, as heat tends to wear down materials and decrease performance in several ways. In many cases, however, cooling can be an inconvenient and energy-intensive process. Accordingly, scientists have been seeking innovative and efficient methods to cool substances down.

Solid-state optical cooling is a prominent example that leverages a very unique phenomenon called anti-Stokes (AS) emission. Usually, when materials absorb photons from incoming light, their electrons transition into an “excited” state.

Under ideal conditions, as electrons return to their original state, part of this excess energy is released as light, while the rest is converted into heat.

Nov 26, 2024

Synthetic Dimension Breakthrough Propels Quantum Tech to New Heights

Posted by in categories: computing, quantum physics

Researchers at INRS have developed a synthetic photonic lattice capable of generating and manipulating quantum states of light, paving the way for promising advancements in applications ranging from quantum computing to secure quantum communication protocols.

A study co-directed by Professor Roberto Morandotti of Institut national de la recherche scientifique (INRS) in collaboration with teams from Germany, Italy, and Japan paves the way for innovative solutions that could enable the development of a system to process quantum information with both simplicity and power.

Their work, just published in the journal Nature Photonics, presents a method for manipulating the photonic states of light in a never-before-seen way, offering greater control over the evolution of photon propagation. This control makes it possible to improve the detection and number of photon coincidences, as well as the efficiency of the system.

Nov 26, 2024

1st-of-its-kind Cryogenic Transistor is 1,000 Times More Efficient And Could Lead to Much More Powerful Quantum Computers

Posted by in categories: computing, quantum physics

Conventional components perform incredibly inefficiently at these sub-freezing temperatures, the scientists said. They’re also very hard to maintain — as more and more qubits are added to a system, the more heat is emitted, which makes it more difficult and expensive to sustain these ultralow temperatures.

Because the new transistor — dubbed the “cryo-CMOS transistor” — is optimized to operate at temperatures under 1 K and emit near-zero heat, it offers plenty of advantages over traditional electronics, representatives of the Finnish company SemiQon, which developed the transistor, said in a statement.

Nov 26, 2024

An unconditional distribution learning advantage with shallow quantum circuits

Posted by in categories: computing, quantum physics

https://scirate.com/arxiv/2411.

Researchers present a #quantummachinelearning advantage of families of constant depth local quantum circuits over reasonably constrained log-log-depth classical circuits.

Quantum…


One of the core challenges of research in quantum computing is concerned with the question whether quantum advantages can be found for near-term quantum circuits that have implications for practical applications. Motivated by this mindset, in this work, we prove an unconditional quantum advantage in the probably approximately correct (PAC) distribution learning framework with shallow quantum circuit hypotheses. We identify a meaningful generative distribution learning problem where constant-depth quantum circuits using one and two qubit gates (QNC^0) are superior compared to constant-depth bounded fan-in classical circuits (NC^0) as a choice for hypothesis classes. We hence prove a PAC distribution learning separation for shallow quantum circuits over shallow classical circuits. We do so by building on recent results by Bene Watts and Parham on unconditional quantum advantages for sampling tasks with shallow circuits, which we technically uplift to a hyperplane learning problem, identifying non-local correlations as the origin of the quantum advantage.

Continue reading “An unconditional distribution learning advantage with shallow quantum circuits” »

Nov 26, 2024

Learning high-accuracy error decoding for quantum processors

Posted by in categories: quantum physics, robotics/AI

A recurrent, transformer-based neural network, called AlphaQubit, learns high-accuracy error decoding to suppress the errors that occur in quantum systems, opening the prospect of using neural-network decoders for real quantum hardware.

Nov 25, 2024

Can Quantum Computers Solve the Many-Body Puzzle? Physicists Develop New Metric

Posted by in categories: computing, information science, quantum physics

The V-score benchmarks classical and quantum algorithms in solving the many-body problem. The study highlights quantum computings potential for tackling complex material systems while providing an open-access framework for future research innovations.

Scientists aspire to use quantum computing to explore complex phenomena that have been difficult for current computers to analyze, such as the characteristics of novel and exotic materials. However, despite the excitement surrounding each announcement of “quantum supremacy,” it remains challenging to pinpoint when quantum computers and algorithms will offer a clear, practical advantage over classical systems.

A large collaboration led by Giuseppe Carleo, a physicist at the Swiss Federal Institute for Technology (EPFL) in Lausane and the member of the National Center for Competence in Research NCCR MARVEL, has now introduced a method to compare the performance of different algorithms, both classical and quantum ones, when simulating complex phenomena in condensed matter physics. The new benchmark, called V-score, is described in an article just published in Science.

Nov 25, 2024

Quantummech.shop (@_quantummech_) • Instagram reel

Posted by in category: quantum physics

118 likes, — _quantummech_ on September 11, 2024: ‘Dr Michio Kaku explains how aliens might be traveling through space’

Nov 25, 2024

Quantum Leap: Scientists Reveal the Shape of a Single Photon for the First Time

Posted by in categories: chemistry, particle physics, quantum physics

Researchers have developed a new quantum theory that for the first time defines the precise shape of a photon, showing its interaction with atoms and its environment.

This breakthrough allows for the visualization of photons and could revolutionize nanophotonic technologies, enhancing secure communication, pathogen detection, and molecular control in chemical reactions.

A groundbreaking quantum theory has allowed researchers to define the exact shape of a single photon for the first time.

Nov 25, 2024

Quantum Physics Unlocks Hidden Energy for a Cleaner Future

Posted by in categories: energy, quantum physics, sustainability

A breakthrough at Rice University enhances thermophotovoltaic systems with a new thermal emitter design, achieving over 60% efficiency.

This could transform energy conversion, making it a viable alternative to batteries for grid-scale energy storage and sustainable industry practices.

Researchers at Rice University have developed an innovative way to enhance thermophotovoltaic (TPV) systems, which convert heat into electricity using light. Drawing inspiration from quantum physics, engineer Gururaj Naik and his team designed a highly efficient thermal emitter that works within realistic design constraints.

Nov 24, 2024

Improving Army logistics with quantum computing

Posted by in categories: computing, quantum physics

Heeding those sentiments, the Australian Army is strategically investing in technological innovation to find better solutions to the complex logistics challenges they face in managing the efficient and safe deployment of personnel and equipment on the battlefield. For a difficult class of problems in an area called “optimization”, quantum computing is on the roadmap for exploration.

With the help of our quantum infrastructure software, they’ve now been able to test and validate a quantum computing solution on real hardware that promises to outperform their existing methods.

Page 19 of 855First1617181920212223Last