Menu

Blog

Archive for the ‘quantum physics’ category: Page 16

Nov 28, 2024

A pathway toward new quantum devices: Electrically defined quantum dots in zinc oxide

Posted by in categories: computing, quantum physics

Researchers have successfully created electrically defined quantum dots in zinc oxide (ZnO) heterostructures, marking a significant milestone in the development of quantum technologies.

Details of their breakthrough were published in the journal Nature Communications on November 7, 2024.

Quantum dots, tiny semiconductor structures that can trap electrons in nanometer-scale spaces, have long been studied for their potential to serve as qubits in quantum computing. These dots are crucial for quantum computing because they allow scientists to control the behavior of electrons, similar to how a conductor might control a current of water flowing through pipes.

Nov 28, 2024

Making quantum physics easier to digest in schools: Experts encourage focus on two-state systems

Posted by in categories: education, quantum physics

A team of physics educators from Italy, Hungary, Slovenia and Germany is focusing on a new approach to teaching quantum physics in schools. Traditional classroom teaching has tended to focus on presenting the history of the origins of quantum physics, which often poses problems for learners.

Using the quantum measurement process as an example, the researchers have now published their first empirical findings on learning —based on two-state systems—in Physical Review Physics Education Research.

The researchers, including physics education specialist Professor Philipp Bitzenbauer from Leipzig University, concentrate on what are known as qubits. These are two-state systems, the simplest and at the same time most important quantum systems that can be used to describe many situations. Controlling and manipulating these qubits plays a central role in modern quantum technologies.

Nov 28, 2024

Quantum Breakthrough Allows Researchers To Create “Previously Unimaginable Nanocrystals”

Posted by in categories: biotech/medical, chemistry, quantum physics, solar power

The type of semiconductive nanocrystals known as quantum dots is not only expanding the forefront of pure science but also playing a crucial role in practical applications, including lasers, quantum QLED televisions and displays, solar cells, medical devices, and other electronics.

A new technique for growing these microscopic crystals, recently published in Science, has not only found a new, more efficient way to build a useful type of quantum dot, but also opened up a whole group of novel chemical materials for future researchers’ exploration.

“I am excited to see how researchers across the globe can harness this technique to prepare previously unimaginable nanocrystals,” said first author Justin Ondry, a former postdoctoral researcher in UChicago’s Talapin Lab.

Nov 28, 2024

Quantum Computing Breakthrough Achieves 99.98% Gate Fidelity

Posted by in categories: computing, quantum physics

Researchers have achieved high gate fidelities up to 99.98% using a new double-transmon coupler. This development enhances quantum computing performance and supports the advancement toward fault-tolerant systems.

Researchers from the RIKEN Center for Quantum Computing and Toshiba have developed a quantum computer gate using a double-transmon coupler (DTC), a device previously proposed in theory to enhance the fidelity of quantum gates significantly. With this innovation, the team achieved a fidelity of 99.92% for a two-qubit device known as a CZ gate and 99.98% for a single-qubit gate.

This milestone, part of the Q-LEAP project, not only improves the performance of noisy intermediate-scale quantum (NISQ) devices but also lays the groundwork for fault-tolerant quantum computation through more effective error correction.

Nov 28, 2024

Cooling With Light: Solid-State Optical Cooling Using Quantum Dots

Posted by in categories: energy, quantum physics

https://www.eurekalert.org/news-releases/1065953

Researchers have explored a fascinating cooling phenomenon within halide perovskite-based “dots-in-crystal” materials, uncovering both their promise and challenges.

In a groundbreaking study, scientists from Chiba University investigated the potential of solid-state optical cooling through perovskite quantum dots. Central to their research was anti-Stokes photoluminescence, a rare process where materials emit photons with higher energy than those absorbed. This innovative approach could transform cooling technology, offering a path to more efficient, energy-saving solutions. Their work not only highlights the immense promise of this technique but also reveals key limitations that pave the way for further advancements in the field.

Nov 27, 2024

Toshiba’s Double-Transmon Coupler for Superconducting Quantum Computers Achieves 99.9% Fidelity

Posted by in categories: computing, quantum physics

PRESS RELEASE —-Toshiba Corporation (Toshiba) has confirmed a technology that they claimed promises to advance progress toward the development of higher-performance quantum computers through an investigation of a potential advance in quantum computing. Experiments conducted by a joint research group from Toshiba and RIKEN, one of Japan’s largest comprehensive research institutions, have successfully realized a Double-Transmon Coupler, a solution for superconducting quantum computers initially proposed by Toshiba. The researchers achieved a world-class fidelity of 99.90% for a two-qubit gate, which is at the heart of quantum computation. Fidelity is a standard performance indicator for quantum gates, quantifying how close an operation is to the ideal in a range from 0% to 100%, with higher percentages indicating greater accuracy in the quantum gate’s operation.

Originally proposed by Toshiba in a paper from September 2022, the Double-Transmon Coupler is a tunable coupler that holds the key to improving the performance of superconducting quantum computers. In successful experimental realization, Toshiba and RIKEN have confirmed its theoretical superiority over conventional tunable couplers in suppressing the long-standing problem of unnecessary residual coupling and enabling high-speed, high-fidelity two-qubit gates.

To improve the performance of two-qubit gates, the coherence time, the period for which the quantum superposition state can be maintained — critical in quantum computers — must be extended. Gates must also be executed quickly and the strength of residual coupling must be suppressed to reduce the errors it causes. The Toshiba-RIKEN team achieved a world-class coherence time for the transmon qubit, a short gate time of 48 ns, and reduced the residual coupling strength to as low as 6 kHz, thereby achieving a fidelity of 99.90%.

Nov 27, 2024

Scientists develop novel high-fidelity quantum computing gate

Posted by in categories: quantum physics, robotics/AI

Researchers from the RIKEN Center for Quantum Computing and Toshiba have succeeded in building a quantum computer gate based on a double-transmon coupler (DTC), which had been proposed theoretically by Hayato Goto, Senior Fellow at Toshiba, as a device that could significantly enhance the fidelity of quantum gates. Using this, they achieved a fidelity of 99.90 percent for a two-qubit device known as a CZ gate and 99.98 percent for a single-qubit gate. This breakthrough, which was carried out as part of the Q-LEAP project, not only boosts the performance of existing noisy intermediate-scale quantum (NISQ) devices but also helps pave the way for the realization of fault-tolerant quantum computation through effective quantum error correction.

The DTC is a new kind of tunable coupler composed of two fixed-frequency transmons—a type of qubit that is relatively insensitive to charge noise—coupled through a loop with an additional Josephson junction. Its architecture addresses one of the most pressing challenges in quantum computing: the development of hardware to entangle qubits in a high-fidelity manner. High gate fidelity is essential for minimizing errors and enhancing the reliability of quantum computations. The DTC scheme stands out by achieving both suppressed residual interaction and rapid high-fidelity two-qubit gate operations, even for highly detuned qubits. Though fidelity of 99.9 percent has been routinely achieved for single-qubit gates, error rates for two-qubit gates are typically 0.5 percent or more, mainly due to interactions between the qubits known as the ZZ interaction.

The key to the current work, published in Physical Review X, is the construction of qubits using state-of-the-art fabrication techniques and gate optimization using a type of machine learning known as reinforcement learning. These approaches allowed the researchers to translate the theoretical potential of the DTC into practical application. They used these approaches to balance two types of remaining errors—leakage error and decoherence error—that remained within the system, selecting a length of 48 nanoseconds as an optimal compromise between the two error sources. Thanks to this, they achieved fidelity levels among the highest reported in the field.

Nov 27, 2024

Twisted light gives electrons a spinning kick: Researchers develop a novel way to control quantum interactions

Posted by in categories: computing, quantum physics

It’s hard to tell when you’re catching some rays at the beach, but light packs a punch. Not only does a beam of light carry energy, it can also carry momentum. This includes linear momentum, which is what makes a speeding train hard to stop, and orbital angular momentum, which is what the Earth carries as it revolves around the sun.

In a new paper, scientists seeking better methods for controlling the quantum interactions between light and matter have demonstrated a novel way to use light to give electrons a spinning kick. They reported the results of their experiment, which shows that a light beam can reliably transfer to itinerant electrons in graphene, on Nov. 26, 2024, in the journal Nature Photonics.

Having tight control over the way that light and matter interact is an essential requirement for applications like quantum computing or quantum sensing. In particular, scientists have been interested in coaxing electrons to respond to some of the more exotic shapes that light beams can assume.

Nov 27, 2024

Simple method can recover and recycle quantum dots in microscopic lasers

Posted by in categories: particle physics, quantum physics, sustainability

Researchers have discovered a way to recycle the tiny particles used to create supraparticle lasers, a technology that precisely controls light at a very small scale. The breakthrough could help manage these valuable materials in a more sustainable way.

Supraparticle lasers work by trapping light inside a tiny sphere made of special particles called quantum dots, which can absorb, emit, and amplify light very efficiently.

They are made by mixing quantum dots in a solution that helps them stick together in tiny bubbles. However, not all attempts succeed, and even successful lasers degrade over time. This leads to wasted materials, which can be expensive.

Nov 26, 2024

Cooling with light: Exploring optical cooling in semiconductor quantum dots

Posted by in categories: energy, quantum physics

Cooling systems are an integral part of many modern technologies, as heat tends to wear down materials and decrease performance in several ways. In many cases, however, cooling can be an inconvenient and energy-intensive process. Accordingly, scientists have been seeking innovative and efficient methods to cool substances down.

Solid-state optical cooling is a prominent example that leverages a very unique phenomenon called anti-Stokes (AS) emission. Usually, when materials absorb photons from incoming light, their electrons transition into an “excited” state.

Under ideal conditions, as electrons return to their original state, part of this excess energy is released as light, while the rest is converted into heat.

Page 16 of 853First1314151617181920Last