Menu

Blog

Archive for the ‘physics’ category: Page 7

Nov 27, 2024

Integrated multi-modal sensing and learning system could give robots new capabilities

Posted by in categories: physics, robotics/AI, space

Trying to understand the makeup and evolution of the solar system’s Kuiper belt has kept researchers busy since it was hypothesized soon after the discovery of Pluto in 1930. In particular, binary pairs of objects there are useful as indicators since their existence today paints a picture of how energetic or violent the evolution of the solar system was in its early days four billion years ago.

Looking closely at the evolution of an ultrawide (in separation) binary object, researchers included more physics that reveals much about their architecture and unfolding. They found that these ultrawide binaries may not have been formed in the primordial solar system as has been thought. Their work has been published in Nature Astronomy.

“In the outer reaches of the solar system, there exists a population of binary systems so widely separated that it seemed worth looking into whether or not they could even survive 4 billion years without being [completely] separated somehow,” said Hunter M. Campbell of the University of Oklahoma in the US.

Nov 27, 2024

Thermal photonics advances enable efficient subambient daytime radiative cooling for vertical surfaces

Posted by in categories: energy, physics

Radiative heat transfer is one of the most critical energy transfer mechanisms in nature. However, traditional blackbody radiation, due to its inherent characteristics, such as its non-directional, incoherent, broad-spectrum, and unpolarized nature, results in energy exchange between the radiating body and all surrounding objects, significantly limiting heat transfer efficiency and thermal flow control. These limitations hinder its practical application.

A recent study published in Science utilized thermal photonics to achieve cross-band synergistic control of thermal radiation in both angle and spectrum. The researchers then designed a directional emitter with cross-scale symmetry-breaking, angularly asymmetric and spectrally selective thermal emission, achieving daytime subambient radiative cooling on vertical surfaces.

The research team was led by Prof. Wei Li from the Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) of the Chinese Academy of Sciences, in collaboration with Prof. Shanhui Fan’s team from Stanford University and Prof. Andrea Alu’s team from the City University of New York.

Nov 26, 2024

Study finds ZnO nanorods achieve 98.3% Faraday efficiency in CO₂ reduction

Posted by in categories: nanotechnology, physics

Nano-ZnO is a potential catalyst material for carbon dioxide electrocatalytic reduction (CO2RR), but its effective Faraday efficiency (FE) is still below 90% and the current density is less than 300 mA cm-2, which is not enough to meet industrial requirements.

A new study published in Chem Catalysis reported on ZnO nanorods for electrocatalytic CO2RR, which after 500°C heat-treatment, achieved the highest vacancy content, the highest FECO of 98.3%, and a partial of 786.56 mA cm-2 in a 3 M KCl electrolyte.

The research was conducted by Prof. Wu Zhonghua and Dr. Xing Xueqing from the Institute of High Energy Physics of the Chinese Academy of Sciences (CAS) and Prof. Han Buxing from the Institute of Chemistry of CAS.

Nov 26, 2024

Record-breaking run on Frontier sets new bar for simulating the universe in exascale era

Posted by in categories: cosmology, physics, supercomputing

The universe just got a whole lot bigger—or at least in the world of computer simulations, that is. In early November, researchers at the Department of Energy’s Argonne National Laboratory used the fastest supercomputer on the planet to run the largest astrophysical simulation of the universe ever conducted.

The achievement was made using the Frontier supercomputer at Oak Ridge National Laboratory. The calculations set a new benchmark for cosmological hydrodynamics simulations and provide a new foundation for simulating the physics of atomic matter and dark matter simultaneously. The simulation size corresponds to surveys undertaken by large telescope observatories, a feat that until now has not been possible at this scale.

Continue reading “Record-breaking run on Frontier sets new bar for simulating the universe in exascale era” »

Nov 26, 2024

Cyanobacterial circadian clock uses an AM radio-like mechanism to control cellular processes

Posted by in categories: biological, media & arts, physics

Cyanobacteria, an ancient lineage of bacteria that perform photosynthesis, have been found to regulate their genes using the same physics principle used in AM radio transmission.

New research published in Current Biology has found that cyanobacteria use variations in the amplitude (strength) of a pulse to convey information in single cells. The finding sheds light on how biological rhythms work together to regulate cellular processes.

In AM (amplitude modulation) radio, a wave with constant strength and frequency—called a carrier wave—is generated from the oscillation of an electric current. The audio signal, which contains the information (such as music or speech) to transmit, is superimposed onto the carrier wave. This is done by varying the amplitude of the carrier wave in accordance with the frequency of the .

Nov 26, 2024

X-ray diffraction enables measurement of in-situ ablation depth in aluminum

Posted by in categories: computing, information science, physics

When laser energy is deposited in a target material, numerous complex processes take place at length and time scales that are too small to visually observe. To study and ultimately fine-tune such processes, researchers look to computer modeling. However, these simulations rely on accurate equation of state (EOS) models to describe the thermodynamic properties—such as pressure, density and temperature—of a target material under the extreme conditions generated by the intense heat of a laser pulse.

One process that is insufficiently addressed in current EOS models is ablation, where the irradiation from the laser beam removes solid material from the target either by means of vaporization or plasma formation (the fourth state of matter). It is this mechanism that launches a shock into the material, ultimately resulting in the high densities required for high pressure experiments such as (ICF).

To better understand laser–matter interactions with regard to ablation, researchers from Lawrence Livermore National Laboratory (LLNL), the University of California, San Diego (UCSD), SLAC National Accelerator Laboratory and other collaborating institutions conducted a study that represents the first example of using X-ray diffraction to make direct time-resolved measurements of an aluminum sample’s ablation depth. The research appears in Applied Physics Letters.

Nov 25, 2024

Plasma pursuits: HEDS Center fellows illuminate the fourth state of matter

Posted by in categories: energy, physics

In 2019, the High Energy Density Science (HEDS) Center at Lawrence Livermore National Laboratory (LLNL) launched its postdoctoral fellowship program, welcoming one new scientist annually to come and conduct research for a two-year term. Supported by LLNL’s Weapons Physics and Design program, HEDS fellows are encouraged to pursue their own research agenda as it relates to the study of matter and energy under extreme conditions.

The most recent postdoctoral fellows, physicist Elizabeth “Liz” Grace (2022 fellow) and plasma physicist Graeme Sutcliffe (2023 fellow), are using high-intensity lasers and advanced diagnostics to observe the behaviors of plasma. A plasma, known as the “fourth state of matter,” is a superheated, ionized gas that makes up the majority of visible matter in the universe, like stars and nebulae. Replicating these conditions is a key step to achieving robust igniting inertial fusion designs for energy resilience.

Nov 25, 2024

Scalar fields: the secret sauce of theoretical physics

Posted by in category: physics

Requested URL must be a parsable and complete DynamicLink.

If you are the developer of this app, ensure that your Dynamic Links domain is correctly configured and that the path component of this URL is valid.

Nov 24, 2024

Why the [expletive] can’t we travel back in time?

Posted by in categories: cosmology, mathematics, physics, time travel

Observations of the cosmic microwave background, leftover light from when the Universe was only 380,000 years old, reveal that our cosmos is not rotating. Infinitely long cylinders don’t exist. The interiors of black holes throw up singularities, telling us that the math of GR is breaking down and can’t be trusted. And wormholes? They’re frighteningly unstable. A single photon passing down the throat of a wormhole will cause it to collapse faster than the speed of light. Attempts to stabilize wormholes require exotic matter (as in, matter with negative mass, which isn’t a thing), and so their existence is just as debatable as time travel itself.

This is the point where physicists get antsy. General relativity is telling us exactly where time travel into the past can be allowed. But every single example runs into other issues that have nothing to do with the math of GR. There is no consistency, no coherence among all these smackdowns. It’s just one random rule over here, and another random fact over there, none of them related to either GR or each other.

If the inability to time travel were a fundamental part of our Universe, you’d expect equally fundamental physics behind that rule. Yet every time we discover a CTC in general relativity, we find some reason it’s im possible (or at the very least, implausible), and the reason seems ad hoc. There isn’t anything tying together any of the “no time travel for you” explanations.

Nov 23, 2024

Dead and Alive: Astronomers Uncover Star Pairs Transforming Our Universe

Posted by in categories: cosmology, physics

Astronomers have made a groundbreaking discovery of binary star systems, consisting of a white dwarf and a main sequence star, within young star clusters.

This discovery opens up new avenues for understanding stellar evolution and could provide insights into the origins of phenomena such as supernovas and gravitational waves.

Breakthrough Discovery in Star Clusters.

Page 7 of 329First4567891011Last