Menu

Blog

Archive for the ‘particle physics’ category: Page 56

Jul 23, 2024

Creating loops of liquid lithium for fusion temperature control

Posted by in categories: engineering, nuclear energy, particle physics

Fusion vessels have a Goldilocks problem: The plasma within needs to be hot enough to generate net power, but if it’s too hot, it can damage the vessel’s interior. Researchers at the Princeton Plasma Physics Laboratory (PPPL) are exploring ways to draw away excess heat, including several methods that use liquid metal.

One possibility, say researchers at the U.S. Department of Energy Lab, involves flowing liquid up and down a series of slats in tiles lining the bottom of the vessel. The liquid metal could also help to protect the components that face the against a bombardment of particles known as neutrons.

“The prevailing option for an economical commercial fusion reactor is a compact design,” said PPPL’s Egemen Kolemen, co-author of a 2022 paper on the research and an associate professor of mechanical and aerospace engineering and the Andlinger Center for Energy and the Environment. However, compactness makes handling the and neutron bombardment a bigger challenge.

Jul 23, 2024

Neil deGrasse Tyson and Sean Carroll Discuss Controversies in Quantum Mechanics

Posted by in categories: cosmology, internet, neuroscience, particle physics, quantum physics

What is the nature of quantum physics? Neil deGrasse Tyson and comedian Chuck Nice get quantum, exploring Schrodinger’s Cat, electrons, Hilbert Space, and the biggest ideas in the universe (in the smallest particles) with theoretical physicist Sean Carroll.

When did the idea of fields originate? Are fields even real or are they just mathematically convenient? We explore electrons, whether they are a field, and whether they exist at all. We also discuss the wave function, Hilbert Space, and what quantum mechanics really is. Do superpositions always exist?

Continue reading “Neil deGrasse Tyson and Sean Carroll Discuss Controversies in Quantum Mechanics” »

Jul 23, 2024

Astrophysicists uncover supermassive black hole/dark matter connection in solving the ‘final parsec problem’

Posted by in categories: cosmology, particle physics

Dark matter could bring black holes together.

Dark matter that interacts with itself could extract significant momentum from a binary supermassive black hole system, causing the black holes to merge.

A gravitational-wave “hum” pervades the Universe.

Continue reading “Astrophysicists uncover supermassive black hole/dark matter connection in solving the ‘final parsec problem’” »

Jul 23, 2024

The Higgs Boson Might Not Be The Portal to New Physics After All

Posted by in category: particle physics

They called it the God particle – a particle so ’goddamn’ elusive, it took nearly 40 years and a $4.75 billion machine to detect, all in the hopes of closing one chapter in physics and opening a new one.

Yet for all its promise, it’s possible the Higgs boson might not be the window to a new age of science.

On including previously neglected corrections to data-driven models of the Higgs boson’s creation, physicists from the Polish Academy of Sciences, the Max-Planck Institute for Physics, and the RWTH Aachen University in Germany have failed to find evidence of ‘hidden’ laws lurking in the particle’s shadow.

Jul 22, 2024

Scientists discover energy and pressure analogies linking hadrons, superconductors and cosmic expansion

Posted by in categories: particle physics, quantum physics

Quantum chromodynamics (QCD) is the theoretical framework for studying the forces within atomic nuclei and their constituent protons and neutrons. A major part of QCD research involves how quarks and gluons are contained within nucleons (protons and neutrons).

Jul 21, 2024

Machine learning unlocks secrets to advanced alloys

Posted by in categories: chemistry, particle physics, robotics/AI

The concept of short-range order (SRO)—the arrangement of atoms over small distances—in metallic alloys has been underexplored in materials science and engineering. But the past decade has seen renewed interest in quantifying it, since decoding SRO is a crucial step toward developing tailored high-performing alloys, such as stronger or heat-resistant materials.

Understanding how atoms arrange themselves is no easy task and must be verified using intensive lab experiments or based on imperfect models. These hurdles have made it difficult to fully explore SRO in .

But Killian Sheriff and Yifan Cao, graduate students in MIT’s Department of Materials Science and Engineering (DMSE), are using to quantify, atom by atom, the complex chemical arrangements that make up SRO. Under the supervision of Assistant Professor Rodrigo Freitas, and with the help of Assistant Professor Tess Smidt in the Department of Electrical Engineering and Computer Science, their work was recently published in Proceedings of the National Academy of Sciences.

Jul 20, 2024

Infleqtion Installs First Quantum Computer at NQCC

Posted by in categories: computing, particle physics, quantum physics, security

Infleqtion, the world’s leading quantum information company, announced the installation of a cutting-edge neutral atom quantum computer at the National Quantum Computing Centre (NQCC).


PRESS RELEASE — Infleqtion, the world’s leading quantum information company, is proud to announce the installation of a cutting-edge neutral atom quantum computer at the National Quantum Computing Centre (NQCC). This marks a significant milestone as Infleqtion becomes the first company to deploy hardware at the NQCC under their quantum computing testbed programme. The news comes on the heels of Infleqtion’s rapid advancement in quantum gate fidelity.

Tim Ballance, President of Infleqtion UK, said, “Our recent installation is part of Infleqtion’s dedication to leading facility logistics in partnership with our colleagues at the NQCC. Together, we are establishing crucial infrastructure components such as network infrastructure, safety protocols, and security measures. Infleqtion has completed our second milestone, which includes the installation and in-situ characterisation of primary lasers, optical, vacuum, and electronic subsystems necessary for the quantum computer to function. This accomplishment demonstrates our advanced technology and expertise in the field.”

Continue reading “Infleqtion Installs First Quantum Computer at NQCC” »

Jul 20, 2024

Researchers use light to control ferrofluid droplet movements in water

Posted by in category: particle physics

A team of engineers at the Max Planck Institute for Intelligent Systems, the Chinese University of Hong Kong and the Gwangju Institute of Science and Technology has found that ferrofluidic drops in a tank of water can be forced to rise in desired ways using light. The study is published in the journal Science Advances.

Prior research has shown that ferrofluid droplets can be manipulated in water using a magnet. In this new study, the research team has shown that they can be manipulated by a light source as well.

Ferrofluid droplets are made by immersing magnetic particles in a drop of oil. Prior research has shown that they can be made to travel across a flat surface by dragging a magnet beneath them. If the droplets are heated, bubbles held inside of them expand, making the bubble bigger and more buoyant.

Jul 20, 2024

New tractor beam technology could one day minimize biopsy trauma

Posted by in categories: particle physics, tractor beam

Researchers at TMOS, the ARC Center of Excellence for Transformative Meta-Optical Systems, have taken an important first step in the development of metasurface-enabled tractor beams—rays of light that can pull particles toward it, a concept that fictional tractor beams featured in science fiction are based on.

Jul 20, 2024

Results suggests titanium-48’s nuclear structure changes when observed at varying distances

Posted by in category: particle physics

The world around us is made up of particles invisible to the naked eye, but physicists continue to gain insights into this mysterious realm. Findings published in Physical Review C by Osaka Metropolitan University researchers show that the nuclear structure of an atom likely changes depending on the distance the protons and neutrons are from the center of the nucleus.

Page 56 of 607First5354555657585960Last