Toggle light / dark theme

😗😁


Imagine having a building made of stacks of bricks connected by adaptable bridges. You pull a knob that modifies the bridges and the building changes functionality. Wouldn’t it be great?

A team of researchers led by Prof. Aitor Mugarza, from the Catalan Institute of Nanoscience and Nanotechnology (ICN2) and ICREA, together with Prof. Diego Peña from the Center for Research in Biological Chemistry and Molecular Materials of the University of Santiago de Campostela (CiQUS-USC), Dr. Cesar Moreno, formerly a member of ICN2’s team and currently a researcher at the University of Cantabria, and Dr. Aran Garcia-Lekue, from the Donostia International Physics Center (DIPC) and Ikerbasque Foundation, has done something analogous, but at the single-atom scale, with the aim of synthesizing new carbon-based materials with tunable properties.

As explained in a paper just published in the Journal of the American Chemical Society (JACS) and featured on the cover of the issue, this research is a significant breakthrough in the precise engineering of atomic-thin materials —called “2D materials” due to their reduced dimensionality. The proposed fabrication technique opens exciting new possibilities for , and, in particular, for application in advanced electronics and future solutions for sustainable energy.

A new study has shown for the first time how electrical creation and control of magnetic vortices in an antiferromagnet can be achieved, a discovery that will increase the data storage capacity and speed of next generation devices.

Researchers from the University of Nottingham’s School of Physics and Astronomy have used magnetic imaging techniques to map the structure of newly formed magnetic vortices and demonstrate their back-and-forth movement due to alternating electrical pulses. Their findings have been published in Nature Nanotechnology.

“This is an exciting moment for us, these magnetic vortices have been proposed as information carriers in next-generation memory devices, but evidence of their existence in antiferromagnets has so far been scarce. Now, we have not only generated them, but also moved them in a controllable way. It’s another success for our material, CuMnAs, which has been at the center of several breakthroughs in antiferromagnetic spintronics over the last few years,” says Oliver Amin.

Something not musk:


No one will ever be able to see a purely mathematical construct such as a perfect sphere. But now, scientists using supercomputer simulations and atomic resolution microscopes have imaged the signatures of electron orbitals, which are defined by mathematical equations of quantum mechanics and predict where an atom’s electron is most likely to be.

Scientists at UT Austin, Princeton University, and ExxonMobil have directly observed the signatures of electron orbitals in two different transition-metal atoms, iron (Fe) and cobalt (Co) present in metal-phthalocyanines. Those signatures are apparent in the forces measured by atomic force microscopes, which often reflect the underlying orbitals and can be so interpreted.

Their study was published in March 2023 as an Editors’ Highlight in the journal Nature Communications.

Impulsive or Helium-3 enriched solar energetic particle (SEP) events, characterized by Helium-3 and ultra-heavy ion abundances, show high association with type III radio bursts. Minor (B-or C-class) GOES soft X-ray flares often accompany these events.

There are reports on such events measured in clusters from sub-flares in single active regions, where abundance showed significant variations. Imaging observations revealed that sources of these recurrent Helium-3 enriched are jets from solar plages (patches of scattered magnetic fields) or coronal hole edges.

From a distance of only half an astronomical unit (AU), or around 46.5 million miles, scientists from the Southwest Research Institute (SwRI) have made the first close-up observations of a source of energetic particles ejected from the Sun. ESA’s Solar Orbiter provided high-resolution images of the solar flare.

Albert Einstein wasn’t entirely convinced about quantum mechanics, suggesting our understanding of it was incomplete. In particular, Einstein took issue with entanglement, the notion that a particle could be affected by another particle that wasn’t close by.

Experiments since have shown that quantum entanglement is indeed possible and that two entangled particles can be connected over a distance. Now a new experiment further confirms it, and in a way we haven’t seen before.

In the new experiment, scientists used a 30-meter-long tube cooled to close to absolute zero to run a Bell test: a random measurement on two entangled qubit (quantum bit) particles at the same time.

Summary: For the first time, Google Quantum AI has observed the peculiar behavior of non-Abelian anyons, particles with the potential to revolutionize quantum computing by making operations more resistant to noise.

Non-Abelian anyons have the unique feature of retaining a sort of memory, allowing us to determine when they have been exchanged, even though they are identical.

The team successfully used these anyons to perform quantum computations, opening a new path towards topological quantum computation. This significant discovery could be instrumental in the future of fault-tolerant topological quantum computing.

Dibaryons are subatomic particles composed of two baryons. Their formation, which occurs through interactions between baryons, is fundamental in big-bang nucleosynthesis, nuclear reactions including those happening within stars, and bridges the gap between nuclear physics, cosmology, and astrophysics. Fascinatingly, the strong force, responsible for the formation and the majority of the mass of nuclei, facilitates the formation of a plethora of different dibaryons with diverse quark combinations.

Nevertheless, these dibaryons are not commonly observed — the deuteron is currently the only known stable dibaryon.

To resolve this apparent dichotomy, it is essential to investigate dibaryons and baryon-baryon interactions at the fundamental level of strong interactions. In a recent publication in Physical Review Letters.

The possibility of the Sun causing catastrophic damage on Earth might seem something out of a science-fiction film, but this threat is very true. One of the best examples of Solar activity harming Earth was provided by the Roland Emmerich film 2012. It depicted the apocalypse prophesied by the Mayans many centuries ago. The storyline of the movie revolved around the Sun emitting unstable neutrinos because of anomalous energy processes, which were causing the Earth’s core to heat up and eventually lead to its destruction.

Although the ‘science’ part of the film was a bit over the top, the threat posed by the Sun could cause significant damage on Earth, and a recent solar flare impact gave us a hint of the Sun’s mighty power.

According to a report by spaceweather.com, a Reversed-polarity sunspot, given the designation AR3296, exploded on the Sun, blasting out dangerous solar flares directly towards Earth yesterday, May 7. Forecasters at NASA’s Solar Dynamics Observatory (SDO) revealed that this explosion on the solar surface produced a M1.5-class solar flare which lasted for a substantial amount of time.