Menu

Blog

Archive for the ‘particle physics’ category: Page 222

Dec 31, 2022

A Particle That May Fill ‘Empty’ Space

Posted by in categories: information science, particle physics

Nobel Prize-winning physicist Frank Wilczek explores the secrets of the cosmos. Read previous columns here.

This year marks the 10th anniversary of the discovery of the Higgs particle. Now we can see it in perspective.

To understand its significance, imagine an ocean planet where intelligent fish evolve and start to make theories of how things move. They do experiments and deduce equations but it is a messy hodgepodge, because the fish, taking their ever-present environment for granted, think of their ocean as “empty space.” After decades of work, though, some realize that by postulating that “empty space” is a medium—ocean—that has mass and motion of its own, you can account for everything using simple, elegant laws (namely, Newton’s laws). Next, the fish start to wonder what their hypothetical ocean is made of. They boil some ocean, do some sophisticated spectroscopy, and ultimately identify water molecules. Imagined beauty guided them to concrete truth.

Dec 31, 2022

Ultrathin organic solar cells could turn buildings into power generators

Posted by in categories: chemistry, particle physics, solar power, space, sustainability

In November 2021, while the municipal utility in Marburg, Germany, was performing scheduled maintenance on a hot water storage facility, engineers glued 18 solar panels to the outside of the main 10-meter-high cylindrical tank. It’s not the typical home for solar panels, most of which are flat, rigid silicon and glass rectangles arrayed on rooftops or in solar parks. The Marburg facility’s panels, by contrast, are ultrathin organic films made by Heliatek, a German solar company. In the past few years, Heliatek has mounted its flexible panels on the sides of office towers, the curved roofs of bus stops, and even the cylindrical shaft of an 80-meter-tall windmill. The goal: expanding solar power’s reach beyond flat land. “There is a huge market where classical photovoltaics do not work,” says Jan Birnstock, Heliatek’s chief technical officer.

Organic photovoltaics (OPVs) such as Heliatek’s are more than 10 times lighter than silicon panels and in some cases cost just half as much to produce. Some are even transparent, which has architects envisioning solar panels not just on rooftops, but incorporated into building facades, windows, and even indoor spaces. “We want to change every building into an electricity-generating building,” Birnstock says.

Heliatek’s panels are among the few OPVs in practical use, and they convert about 9% of the energy in sunlight to electricity. But in recent years, researchers around the globe have come up with new materials and designs that, in small, labmade prototypes, have reached efficiencies of nearly 20%, approaching silicon and alternative inorganic thin-film solar cells, such as those made from a mix of copper, indium, gallium, and selenium (CIGS). Unlike silicon crystals and CIGS, where researchers are mostly limited to the few chemical options nature gives them, OPVs allow them to tweak bonds, rearrange atoms, and mix in elements from across the periodic table. Those changes represent knobs chemists can adjust to improve their materials’ ability to absorb sunlight, conduct charges, and resist degradation. OPVs still fall short on those measures. But, “There is an enormous white space for exploration,” says Stephen Forrest, an OPV chemist at the University of Michigan, Ann Arbor.

Dec 30, 2022

Consciousness may explain some of the weirdness of quantum mechanics

Posted by in categories: neuroscience, particle physics, quantum physics

A wild theory suggests that consciousness may explain quantum mechanics, by forcing the subatomic particles to choose one concrete outcome.

Dec 30, 2022

US startup wants to inject sulfur into the atmosphere to cool down the Earth

Posted by in categories: chemistry, climatology, engineering, particle physics, space, sustainability

In theory, it could mitigate the effects of global warming; but experts are wary.

Make Sunsets, a California-based startup, released weather balloons that carried sulfur particles into the stratosphere which possibly burst there, releasing the chemical, MIT Technology Review.

Continue reading “US startup wants to inject sulfur into the atmosphere to cool down the Earth” »

Dec 30, 2022

Lasers used to throw and catch single atoms for first time

Posted by in categories: computing, particle physics, quantum physics

Lasers have been used to throw and catch extremely cold, single atoms. The technique could be used to assemble quantum computers in the future.

Dec 30, 2022

Physicists Discover a New Way to ‘See’ Objects Without Looking at Them

Posted by in categories: particle physics, quantum physics

Ordinarily, to measure an object we must interact with it in some way. Whether it’s by a prod or a poke, an echo of sound waves, or a shower of light, it’s near impossible to look without touching.

In the world of quantum physics, there are some exceptions to this rule.

Researchers from Aalto University in Finland propose a way to ‘see’ a microwave pulse without the absorption and re-emission of any light waves. It’s an example of a special interaction-free measurement, where something is observed without being rattled by a mediating particle.

Dec 29, 2022

First results from LHAASO place tighter constraints on dark matter’s lifetime

Posted by in categories: cosmology, particle physics

Scientists from the Large High Altitude Air Shower Observatory (LHAASO) have presented roughly 1.5 years of observational data, calculating new limits on the lifetime of heavy dark matter particles that have masses between 105 and 109 giga-electron volts.

The study, titled “Constraints on heavy decaying dark matter from 570 days of LHAASO observations,” was recently published in Physics Review Letters.

The gravitational model of the Milky Way shows that there is a very high density of dark matter in the galactic center, and the gamma rays produced by the decay of this dark matter will radiate from the to the surroundings for hundreds of light-years or even thousands of light-years. However, for a long time, the observation of ultra-high-energy gamma rays produced by heavy dark matter has been complicated by the presence of other background radiation.

Dec 29, 2022

A Startup Has Begun Releasing Chemicals Into the Stratosphere

Posted by in categories: chemistry, climatology, engineering, particle physics, sustainability

Recently, a start-up company called Make Sunsets has begun releasing chemicals into the stratosphere as a form of geoengineering that is intended to help climate change. However, many are very hesitant about the startup and the result of what they are doing.

For perspective, geoengineering is when chemical particles are released into the stratosphere to manipulate the weather or climate. The theory is that when sulfur is released into the atmosphere that it mimics a natural process that occurs after volcanoes and that by doing this intentionally, we could ease global warming.

While it isn’t difficult to do this, it is very controversial. The reason for this is that it could potentially have dangerous side effects. Additionally, because some regions could endure worse side effects, it could cause issues across international lines.

Dec 28, 2022

Scientists have recreated the first matter of the universe

Posted by in categories: cosmology, particle physics

What were the first moments of the Universe like? It’s a mystery that scientists have been trying to unravel for decades. The ALICE collaboration at CERN is a specialist in the subject: this detector (A Large Ion Collider Experiment) was designed to study quark-gluon plasma, a phase of matter that would have existed just after the Big Bang. And the team recently succeeded in recreating and characterizing this very first hypothetical material, using the Large Hadron Collider (LHC).

Dec 28, 2022

Is all matter made up of both particles and waves?

Posted by in categories: particle physics, quantum physics

According to quantum mechanics, the physics theory that describes the zoo of subatomic particles, all matter can be described as both particles and waves. But is it real?