Toggle light / dark theme

Quantum field theory suggests that the very structure of the universe could change, altering cosmos as we know it. A new quantum machine might help probe this elusive phenomenon, while also helping improve quantum computers.

Nearly 50 years ago, quantum field theory researchers proposed that the universe exists in a “false vacuum”. This would mean that the stable appearance of the cosmos and its physical laws might be on the verge of collapse. The universe, according to this theory, could be transitioning to a “true vacuum” state.

The theory comes from predictions about the behaviour of the Higgs field associated with the Higgs boson, which Cosmos first looked at nearly a decade ago – the article is worth reading.

The spectrum of cosmic-ray antiprotons has been measured for a full solar cycle, which may allow a better understanding of the sources and transport mechanisms of these high-energy particles.

The heliosphere is a region of space extending approximately 122 astronomical units (au) from the Sun (1 au being the average distance between the Sun and Earth). This volume mostly contains plasma originating from the Sun but also various charged particles with higher energies. These particles can be categorized according to their energies and origins: Lower-energy solar energetic particles, for instance, come from the Sun itself, while Jovian electrons have their origin in the magnetosphere of Jupiter. Another such population comes from outside the Solar System: galactic cosmic rays (GCRs), which mostly consist of protons and electrons and their antiparticles and span a vast range of energies from mega-electron-volts to exa-electron-volts [1]. Astonishingly, energies at the high end of this range would correspond to a single particle carrying as much kinetic energy as a well-thrown baseball.

In order to find rare processes from collider data, scientists use computer algorithms to determine the type and properties of particles based on the faint signals that they leave in the detector. One such particle is the tau lepton, which is produced, for example, in the decay of the Higgs boson.

The leaves a spray or jet of low-energy , the subtle pattern of which in the jet allows one to distinguish them from jets produced by other particles. The jet also contains about the energy of the tau lepton, which is distributed among the daughter particles, and on the way is decayed. Currently, the best algorithms use multiple steps of combinatorics and computer vision.

ChatGPT has shown much stronger performance in rejecting backgrounds than computer-vision based methods. In this paper, researchers showed that such language-based models can find the tau leptons from the jet patterns, and also determine the energy and decay properties more accurately than before.

The mutual control of magnetization and polarization in multiferroics is key to spintronic devices, but ensuring its stability at room temperature is essential for practical applications. Here, magnetic control of ferroelectric polarization in Tb2(MoO4)3 is demonstrated up to 432 K, ensuring the stability of magnetoelectric effect well above room temperature.

Antimony is widely used in the production of materials for electronics, as well as metal alloys resistant to corrosion and high temperatures.

“Antimony melt is interesting because near the melting point, the atoms in this melt can form bound structures in the form of compact clusters or extended chains and remain in a bound state for quite a long time. We found out that the basic unit of these structures are linked triplets of adjacent atoms, and the centers of mass of these linked atoms are located at the vertices of right triangles. It is from these triplets that larger structures are formed, the presence of which causes anomalous structural features detected in neutron and X-ray diffraction experiments,” explains Dr. Anatolii Mokshin, study supervisor and Chair of the Department of Computational Physics and Modeling of Physical Processes.

The computer modeling method based on quantum-chemical calculations made it possible to reproduce anomalies in the structure of molten with high accuracy.

In a groundbreaking study published in the journal Optica, this innovative instrument emerges from the collaborative genius of the National Quantum Science and Technology Institute (NQSTI), incorporating expertise from several esteemed institutions. The device serves as a window into a dual universe, allowing the simultaneous examination of phenomena governed by both classical laws and the bizarre rules of quantum mechanics.

At the heart of this discovery lies the technique of optical trapping, a method that harnesses the power of light to manipulate microscopic particles. Now, empowered by the insights of physicist Francesco Marin and his team, the dual laser setup dramatically enhances our understanding of how these nano-objects interact. As they oscillate in their laser confines, the spheres reveal a dance of behaviors—some that align with our everyday experiences, and others that defy our intuition.