Menu

Blog

Archive for the ‘nanotechnology’ category: Page 79

Jun 1, 2023

A new approach to realize parallel in-memory wireless computing

Posted by in categories: computing, internet, nanotechnology

Advanced communication technologies, such as the fifth generation (5G) mobile network and the internet of things (IoT) can greatly benefit from devices that can support wireless communications while consuming a minimum amount of power. As most existing devices have separate components to perform computations and transmit data, reducing their energy consumption can be challenging.

Researchers at Nanjing University, Southeast University and Purple Mountain Laboratories in China recently devised a parallel in-memory wireless computing scheme that performs computations and concurrently on the same hardware. This design, introduced in Nature Electronics, is based on the use of mermristive crossbar arrays, grid-like structures containing memristors, electrical components that can both process and store data.

“In one of our previous works published in Nature Nanotechnology, we proposed the realization of massively parallel in-memory computing by using continuous-time data representation in a nanoscale crossbar array,” Shi-Jun Liang, one of the researchers who carried out the recent study, told Tech Xplore.

May 31, 2023

Examining a nanocrystal that shines on and off indefinitely

Posted by in categories: engineering, nanotechnology

In 2021, lanthanide-doped nanoparticles made waves—or rather, an avalanche—when Changwan Lee, then a Ph.D. student in Jim Schuck’s lab at Columbia Engineering, set off an extreme light-producing chain reaction from ultrasmall crystals developed at the Molecular Foundry at Berkeley Lab. Those same crystals are back again with a blink that can now be deliberately and indefinitely controlled.

“We’ve found the first fully photostable, fully photoswitchable nanoparticle—a holy grail of nanoprobe design,” said Schuck, associate professor of mechanical engineering.

This unique material was synthesized in the laboratories of Emory Chan and Bruce Cohen at the Molecular Foundry, Lawrence Berkeley National Laboratory as well as in a national lab in South Korea. The research team also included Yung Doug Suh’s lab at Ulsan National Institute of Science and Technology (UNIST).

May 30, 2023

The Woman Who Doesn’t Feel Pain — New Study Reveals Her Unique Molecular Machinery

Posted by in categories: biotech/medical, genetics, nanotechnology

New research from UCL, investigating the biology of a rare genetic mutation that enables carrier Jo Cameron to live virtually without pain and fear while also healing quickly, discovered that the mutation in FAAH-OUT gene ‘turns down’ FAAH gene expression, affecting molecular pathways related to wound healing and mood, thereby offering potential new targets for drug discovery.

New research from University College London (UCL) has unraveled the biology behind a unique genetic mutation that results in its carrier experiencing minimal pain, enhanced healing, and lower levels of anxiety and fear.

Published in the journal Brain, the research is a follow-up to the team’s 2019 discovery of the FAAH-OUT gene and its rare mutations, which make Jo Cameron almost immune to pain, and devoid of fear and anxiety. The latest study elucidates how this mutation reduces the expression of the FAAH gene and impacts other molecular pathways associated with mood and wound healing. The insights garnered from these findings could potentially pave the way for novel drug targets and foster further research in these domains.

May 28, 2023

Team successfully demonstrates laser-induced monolayer graphene nanoprocessing

Posted by in categories: computing, nanotechnology

Discovered in 2004, graphene has revolutionized various scientific fields. It possesses remarkable properties like high electron mobility, mechanical strength, and thermal conductivity. Extensive time and effort has been invested in exploring its potential as a next-generation semiconductor material, leading to the development of graphene-based transistors, transparent electrodes, and sensors.

But to render these devices into practical application, it’s crucial to have efficient processing techniques that can structure films at micrometer and nanometer scale. Typically, micro/nanoscale material processing and device manufacturing employ nanolithography and focused ion beam methods. However, these have posed longstanding challenges for laboratory researchers due to their need for large-scale equipment, lengthy manufacturing times, and complex operations.

In January 2023, Tohoku University researchers created a technique that could micro/nanofabricate silicon nitride devices with thicknesses ranging from five to 50 nanometers. The method employed a femtosecond laser, which emitted extremely short, rapid pulses of light. It turned out to be capable of quickly and conveniently processing thin materials without a vacuum environment.

May 28, 2023

Advances in Nanoelectrochemistry: Enabling New Discoveries in Small Volume Chemistry

Posted by in categories: chemistry, education, nanotechnology

In this interview conducted at Pittcon 2023 in Philadelphia, Pennsylvania, we spoke to Dr. Jeffrey Dick about his work studying the chemistry of small volumes and nano-electrochemical tools.

What is your background, and what first attracted you to this field?

My name is Jeffrey Dick, and I grew up in Muncie, Indiana. I studied chemistry at Ball State University and fell in love with research and education.

May 28, 2023

Unlocking the Secret Nanostructures of Magnetic Materials With the Right Illumination

Posted by in categories: chemistry, computing, nanotechnology

Researchers from the Max Born Institute in Berlin have successfully performed X-ray Magnetic Circular Dichroism (XMCD) experiments in a laser laboratory for the first time.

Unlocking the secrets of magnetic materials requires the right illumination. Magnetic x-ray circular dichroism makes it possible to decode magnetic order in nanostructures and to assign it to different layers or chemical elements. Researchers at the Max Born Institute in Berlin have succeeded in implementing this unique measurement technique in the soft-x-ray range in a laser laboratory. With this development, many technologically relevant questions can now be investigated outside of scientific large-scale facilities for the first time.

Magnetic nanostructures have long been part of our everyday life, e.g., in the form of fast and compact data storage devices or highly sensitive sensors. A major contribution to the understanding of many of the relevant magnetic effects and functionalities is made by a special measurement method: X-ray Magnetic Circular Dichroism (XMCD).

May 28, 2023

Penn State researchers create first protein-based nano-computing agent

Posted by in categories: bioengineering, biotech/medical, computing, nanotechnology

The first protein-based nano-computing agent that functions as a circuit has been created by Penn State researchers. The milestone puts them one step closer to developing next-generation cell-based therapies to treat diseases like diabetes and cancer.

Traditional synthetic biology approaches for cell-based therapies, such as ones that destroy cancer cells or encourage tissue regeneration after injury, rely on the expression or suppression of proteins that produce a desired action within a cell. This approach can take time (for proteins to be expressed and degrade) and cost cellular energy in the process. A team of Penn State College of Medicine and Huck Institutes of the Life Sciences researchers are taking a different approach.

“We’re engineering proteins that directly produce a desired action,” said Nikolay Dokholyan, G. Thomas Passananti Professor and vice chair for research in the Department of Pharmacology. “Our protein-based devices or nano-computing agents respond directly to stimuli (inputs) and then produce a desired action (outputs).”

May 28, 2023

Researchers investigate the swarming behavior of microrobots

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Miniaturization is progressing rapidly in many fields, and the trend toward the creation of ever smaller units is also prevalent in the world of robot technology. In the future, minuscule robots used in medical and pharmaceutical applications might be able to transport medication to targeted sites in the body. Statistical physics can contribute to the foundations for the development of such technologies.

A team of researchers at Johannes Gutenberg University Mainz (JGU) has now taken a new approach to the issue by analyzing a group of robots and how they behave as collectives of motile units based on the model of active Brownian particles. The team’s findings demonstrating that there may be an alternative route to realize programmable active matter have been published in Science Advances.

Researchers are looking for new ways to perform tasks on the micro-and nanoscale that are otherwise difficult to realize, particularly as the miniaturization of devices and components is beginning to reach physical limits. One new option being considered is the use of collectives of robotic units in place of a single robot to complete a task.

May 27, 2023

Pioneering Experimental Method Unlocks Spin Structure Secrets in 2D Materials

Posted by in categories: nanotechnology, particle physics

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-dimensional hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes of carbon, including graphite, charcoal, carbon nanotubes, and fullerenes. In proportion to its thickness, it is about 100 times stronger than the strongest steel.

May 27, 2023

Protein-based nano-computer evolves in its ability to influence cell behavior

Posted by in categories: bioengineering, biotech/medical, computing, nanotechnology

The first protein-based nano-computing agent that functions as a circuit has been created by Penn State researchers. The milestone puts them one step closer to developing next-generation cell-based therapies to treat diseases like diabetes and cancer.

Traditional synthetic biology approaches for cell-based therapies, such as ones that destroy or encourage tissue regeneration after injury, rely on the expression or suppression of proteins that produce a desired action within a cell. This approach can take time (for proteins to be expressed and degrade) and cost cellular energy in the process. A team of Penn State College of Medicine and Huck Institutes of the Life Sciences researchers are taking a different approach.

“We’re engineering proteins that directly produce a desired action,” said Nikolay Dokholyan, G. Thomas Passananti Professor and vice chair for research in the Department of Pharmacology. “Our protein-based devices or nano-computing agents respond directly to stimuli (inputs) and then produce a desired action (outputs).”

Page 79 of 304First7677787980818283Last