Menu

Blog

Archive for the ‘nanotechnology’ category: Page 75

Jul 14, 2023

The ethics of nanobiotechnology: A call for global regulation

Posted by in categories: biotech/medical, cyborgs, ethics, nanotechnology, neuroscience, transhumanism

Prosthetics moved by thoughts. Targeted treatments for aggressive brain cancer. Soldiers with enhanced vision or bionic ears.

These powerful technologies sound like science fiction, but they’re becoming possible thanks to nanoparticles.

And, as with any great power, there comes great responsibility.

Jul 13, 2023

Superconducting-nanowire Single-photon Camera with 400,000 Pixels Will Explore Brain cells, space

Posted by in categories: biotech/medical, nanotechnology, neuroscience, quantum physics

A team at the National Institute of Standards and Technology in Boulder, Colorado, has reported the successful implementation of a 400,000 pixel superconducting nanowire single-photon detector (SNSPD) that they say will pave the way for the development of extremely light-sensitive large-format superconducting cameras. The camera will also prove invaluable for those doing medical research, where the ability to examine organs such as the brain without disturbing tissue is critical.

Superconducting detectors operate at very low temperatures and generate a minimum of excess noise, making them ideal for testing the non-local nature of reality, investigating dark matter, mapping the early universe, and performing quantum computation and communication. Previously there were no large-scale superconducting cameras – even the largest demonstrations have never exceeded 20 thousand pixels.

This was especially true for one of the most promising detector technologies, the superconducting nanowire single-photon detector (SNSPD). These detectors have been demonstrated with system detection efficiencies of 98.0%, sub-3-ps timing jitter, sensitivity from the ultraviolet (250nm) to the mid-infrared (10um), and dark count rates below 6.2e-6 counts per second (cps), but despite more than two decades of development they have never achieved an array size larger than a kilopixel. Here, we report on the implementation and characterization of a 400,000 pixel SNSPD camera, a factor of 400 improvement over the previous state-of-the-art. The array spanned an area 4×2.5 mm with a 5x5um resolution, reached unity quantum efficiency at wavelengths of 370 nm and 635 nm, counted at a rate of 1.1e5 cps, and had a dark count rate of 1e-4 cps per detector (corresponding to 0.13 cps over the whole array).

Jul 13, 2023

Light-activated molecular machines get cells ‘talking’

Posted by in categories: biotech/medical, chemistry, nanotechnology

One of the main ways cells “talk” to each other to coordinate essential biological activities such as muscle contraction, hormone release, neuronal firing, digestion and immune activation is through calcium signaling.

Rice University scientists have used light-activated molecular machines to trigger intercellular calcium wave signals, revealing a powerful new strategy for controlling cellular activity, according to a new study published in Nature Nanotechnology. This technology could lead to improved treatments for people with , digestive issues and more.

Continue reading “Light-activated molecular machines get cells ‘talking’” »

Jul 13, 2023

Quantum plasmonics with dressing EM fields: Advancing the design of nanoscale integrated circuits

Posted by in categories: nanotechnology, quantum physics

Envision a realm where light can be meticulously controlled and manipulated at minuscule scales, unlocking unprecedented potentials for nanotechnology and quantum information technology. Recent breakthroughs in quantum research have propelled us closer to a reality that may be more achievable than previously realized.

In this article, we delve into the domain of surface plasmon polaritons (SPPs) and the vast possibilities they offer in revolutionizing the field of quantum optics.

Picture a serene lake on a sunny day. As you drop a small stone into the water, it sets in motion gentle ripples that traverse the surface. Now, imagine light as akin to those undulating ripples. When light encounters the interface of a metal and a dielectric material, it has the power to generate waves, much like the ripples on the lake. This phenomenon is even more intriguing because these light waves can interact with the metal’s microscopic constituents, such as electrons. Remarkably, the light waves and electrons synchronize their oscillations, giving rise to an SPP wave.

Jul 13, 2023

Jean-Pierre Sauvage, Nobel Laureate in Chemistry: ‘Work is being done on machines that will travel through the blood to kill cancer’

Posted by in categories: biotech/medical, chemistry, cyborgs, genetics, nanotechnology

Last year, the chemist – who is an emeritus professor at the University of Strasbourg – published a book titled The Elegance of Molecules. In the pages, he lets his imagination run wild. “Over time, most of the chemical reactions that govern nature could be controlled or imitated by a nanorobot: counter-offensives by the immune system, the production of antibodies, hormones on demand, the repairing of damaged cells and organs [or] the correction of anomalies in the genetic text,” Sauvage writes. “None of this will belong in the realm of science fiction in the long-term.”

Sitting in the hotel’s restaurant, however, the researcher’s realism contrasts with his futuristic fantasy. “Today, we can’t do much. Molecular machines are a somewhat new concept: we can make molecules that move as we choose [and] we can make a fairly complex molecule perform a rotary motion. Or we can make it behave like a muscle, stretching and contracting. The applications will arrive in the future, but we’re not there yet,” he stresses.

The French researcher has been developing these molecular muscles since 2002 alongside a Spanish chemist – María Consuelo Jiménez – from the Polytechnic University of Valencia. “The first thing was to show that we can make a molecule that contracts and stretches. Now, you can think of making materials – especially fibers – that can contract and stretch. Perhaps artificial muscles could be made to replace damaged muscles in people, but that will be in the future. At the moment, there are no real applications,” Sauvage clarifies.

Jul 12, 2023

Optoelectronics Nanotechnology Innovation: MIT Grows Precise Arrays of nanoLEDs

Posted by in categories: biological, chemistry, nanotechnology, physics

A new technique produces perovskite nanocrystals right where they’re needed, so the exceedingly delicate materials can be integrated into nanoscale.

The nanoscale refers to a length scale that is extremely small, typically on the order of nanometers (nm), which is one billionth of a meter. At this scale, materials and systems exhibit unique properties and behaviors that are different from those observed at larger length scales. The prefix “nano-” is derived from the Greek word “nanos,” which means “dwarf” or “very small.” Nanoscale phenomena are relevant to many fields, including materials science, chemistry, biology, and physics.

Jul 12, 2023

Scientists track nanoscale processes of CRISPR-Cas complexes

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, nanotechnology

Scientists at Leipzig University, in collaboration with colleagues at Vilnius University in Lithuania, have developed a new method to measure the smallest twists and torques of molecules within milliseconds. The method makes it possible to track the gene recognition of CRISPR-Cas protein complexes, also known as “genetic scissors”, in real time and with the highest resolution. With the data obtained, the recognition process can be accurately characterised and modelled to improve the precision of the genetic scissors. The results obtained by the team led by Professor Ralf Seidel and Dominik Kauert from the Faculty of Physics and Earth Sciences have now been published in the prestigious journal Nature Structural and Molecular Biology.

When bacteria are attacked by a virus, they can defend themselves with a mechanism that fends off the genetic material introduced by the intruder. The key is CRISPR-Cas protein complexes. It is only in the last decade that their function for adaptive immunity in microorganisms has been discovered and elucidated. With the help of an embedded RNA, the CRISPR complexes recognize a short sequence in the attacker’s DNA. The mechanism of sequence recognition by RNA has since been used to selectively switch off and modify genes in any organism. This discovery revolutionized genetic engineering and was already honored in 2020 with the Nobel Prize in Chemistry awarded to Emmanuelle Charpentier and Jennifer A. Doudna.

Occasionally, however, CRISPR complexes also react to gene segments that differ slightly from the sequence specified by the RNA. This leads to undesirable side effects in medical applications. “The causes of this are not yet well understood, as the process could not be observed directly until now,” says Dominik Kauert, who worked on the project as a PhD student.

Jul 11, 2023

Dr. Khalid Salaita, PhD — Emory University — Developing Novel DNA-Based Mechano-Technologies

Posted by in categories: biotech/medical, chemistry, engineering, health, nanotechnology

Developing Novel DNA-Based Mechano-Technologies For Human Health — Dr. Khalid Salaita, Ph.D. — Emory University


Dr. Khalid Salaita, Ph.D. (https://www.salaitalab.com/salaita) is a Professor of Chemistry at Emory University in Atlanta, Georgia (USA), program faculty in the Department of Biomedical Engineering at Georgia Tech and Emory, program member of Cancer Cell Biology at Winship Cancer Institute, and most recently is the recent winner Future Insight Prize given by Merck KGaA, Darmstadt, Germany (https://www.emdgroup.com/en/research/open-innovation/futurei…aming.html) for his cutting edge work in the area of mechanobiology.

Continue reading “Dr. Khalid Salaita, PhD — Emory University — Developing Novel DNA-Based Mechano-Technologies” »

Jul 9, 2023

Revolutionizing Electrochemistry: Innovating With Nanoporous Model Electrodes

Posted by in categories: chemistry, nanotechnology, particle physics

Scientists have created an innovative model membrane electrode with hollow giant carbon nanotubes and a wide range of nanopore dimensions. The invention aids in understanding electrochemical behaviors and could significantly advance our knowledge of porous carbon materials in electrochemical systems.

Researchers at Tohoku University and Tsinghua University have introduced a next-generation model membrane electrode that promises to revolutionize fundamental electrochemical research. This innovative electrode, fabricated through a meticulous process, showcases an ordered array of hollow giant carbon nanotubes (gCNTs) within a nanoporous membrane, unlocking new possibilities for energy storage and electrochemical studies.

The key breakthrough lies in the construction of this novel electrode. The researchers developed a uniform carbon coating technique on anodic aluminum oxide (AAO) formed on an aluminum substrate, with the barrier layer eliminated. The resulting conformally carbon-coated layer exhibits vertically aligned gCNTs with nanopores ranging from 10 to 200 nm in diameter and 2 μm to 90 μm in length, covering small electrolyte molecules to bio-related large matters such as enzymes and exosomes. Unlike traditional composite electrodes, this self-standing model electrode eliminates inter-particle contact, ensuring minimal contact resistance — something essential for interpreting the corresponding electrochemical behaviors.

Jul 8, 2023

Humans to Achieve Immortality by 2030, Google Engineer Claims

Posted by in categories: genetics, life extension, nanotechnology, Ray Kurzweil, robotics/AI

Immortality has been a dream of human beings since the dawn of time. Mankind´s fascination with cheating death is reflected in scientific records, mythology, and folklore dating back at least to ancient Egypt.

Now, Ray Kurzweil, a former Google engineer, claims that humans will achieve immortality by 2030 – and 86 percent of his 147 predictions have been correct.

Continue reading “Humans to Achieve Immortality by 2030, Google Engineer Claims” »

Page 75 of 304First7273747576777879Last