Toggle light / dark theme

The authors present an approach to simultaneously map local magnetization, strain, atomic structure at nanoscale. It provides direct visualization of strainmagnetic coupling in ferromagnetic materials, opening avenues for studying nanomagnetism.

Researchers have developed nanoflower-coated bandages with antibiotic and anti-inflammatory properties, capable of killing bacteria and promoting wound healing.

A carnation-like nanostructure could one day be used in bandages to promote wound healing. Researchers report in ACS Applied Bio Materials that laboratory tests of their nanoflower-coated dressings demonstrate antibiotic, anti-inflammatory, and biocompatible properties.

They state that these results indicate tannic acid and copper(II) phosphate sprouted nanoflower bandages are promising candidates for treating infections and inflammatory conditions.

In this study, the authors present optimization and efficacy testing of apolipoprotein-based lipid nanoparticles for delivering various nucleic acid therapeutics in vivo to immune cells and their progenitors in the bone marrow.

Current wearable and implantable biosensors still face challenges to improve sensitivity, stability and scalability. Here the authors report inkjet-printable, mass-producible core–shell nanoparticle-based biosensors to monitor a broad range of biomarkers.

In a groundbreaking study published in the journal Optica, this innovative instrument emerges from the collaborative genius of the National Quantum Science and Technology Institute (NQSTI), incorporating expertise from several esteemed institutions. The device serves as a window into a dual universe, allowing the simultaneous examination of phenomena governed by both classical laws and the bizarre rules of quantum mechanics.

At the heart of this discovery lies the technique of optical trapping, a method that harnesses the power of light to manipulate microscopic particles. Now, empowered by the insights of physicist Francesco Marin and his team, the dual laser setup dramatically enhances our understanding of how these nano-objects interact. As they oscillate in their laser confines, the spheres reveal a dance of behaviors—some that align with our everyday experiences, and others that defy our intuition.

The future of medicine may very well lie in the personalization of health care—knowing exactly what an individual needs and then delivering just the right mix of nutrients, metabolites, and medications, if necessary, to stabilize and improve their condition. To make this possible, physicians first need a way to continuously measure and monitor certain biomarkers of health.

To that end, a team of Caltech engineers has developed a technique for inkjet printing arrays of special that enables the mass production of long-lasting wearable sweat sensors. These sensors could be used to monitor a variety of biomarkers, such as vitamins, hormones, metabolites, and medications, in real time, providing patients and their physicians with the ability to continually follow changes in the levels of those .

Wearable biosensors that incorporate the new nanoparticles have been successfully used to monitor metabolites in patients suffering from long COVID and the levels of chemotherapy drugs in at City of Hope in Duarte, California.

Researchers at the University of Kentucky are exploring new ways to use nanoparticles in combination with other materials as an innovative approach to cancer therapy.

The paper titled “Iron Oxide Nanozymes Enhanced by Ascorbic Acid for Macrophage-Based Cancer Therapy” was published earlier this year in Nanoscale.

Sheng Tong, Ph.D., an associate professor in the F. Joseph Halcomb II, M.D., Department of Biomedical Engineering in the UK Stanley and Karen Pigman College of Engineering, led the study.

Tiny plastic particles may accumulate at higher levels in the human brain than in the kidney and liver, with greater concentrations detected in postmortem samples from 2024 than in those from 2016, suggests a paper published in Nature Medicine. Although the potential implications for human health remain unclear, these findings may highlight a consequence of rising global concentrations of environmental plastics.

The amount of environmental nano-and microparticles, which range in size from as small as 1 nanometer (one billionth of a meter) up to 500 micrometers (one millionth of a meter) in diameter, has increased exponentially over the past 50 years. However, whether they are harmful or toxic to humans is unclear. Most previous studies used visual microscopic spectroscopy methods to identify particulates in , but this is often limited to particulates larger than 5 micrometers.

Researcher Matthew Campen and colleagues used novel methods to analyze the distribution of micro-and nanoparticles in samples of , kidney, and tissues from human bodies that underwent autopsy in 2016 and 2024. A total of 52 brain specimens (28 in 2016 and 24 in 2024) were analyzed.

Biological systems come in all shapes, sizes and structures. Some of these structures, such as those found in DNA, RNA and proteins, are formed through complex molecular interactions that are not easily duplicated by inorganic materials.

A research team led by Richard Robinson, associate professor of materials science and engineering, discovered a way to bind and stack nanoscale clusters of copper molecules that can self-assemble and mimic these complex biosystem structures at different length scales. The clusters provide a platform for developing new catalytic properties that extend beyond what traditional materials can offer.

The nanocluster core connects to two copper caps fitted with special binding molecules, known as ligands, that are angled like propeller blades.

Every time a shuttle docks with the International Space Station (ISS), a delicate dance unfolds between the shuttle’s docking system and its counterpart on the station. Thanks to international standards, these mechanisms are universally compatible, ensuring astronauts and cargo can safely and seamlessly enter the station.

A similar challenge arises at the microscopic level when (LNPs)—the revolutionary drug vehicles behind the COVID-19 vaccines—attempt to deliver mRNA to cells. Optimizing the design and delivery of LNPs can greatly enhance their ability to deliver mRNA successfully, empowering cells with the disease-fighting instructions needed to transform medicine.