Menu

Blog

Archive for the ‘nanotechnology’ category: Page 156

Nov 1, 2021

Immersive Worlds: The Metaverse We Design vs. A Computational Multiverse We Inhabit

Posted by in categories: cosmology, genetics, nanotechnology, quantum physics, robotics/AI, virtual reality

VR can soon become perceptually indistinguishable from the physical reality, even superior in many practical ways, and any artificially created “imaginary” world with a logically consistent ruleset of physics would be ultrarealistic. Advanced immersive technologies incorporating quantum computing, AI, cybernetics, optogenetics and nanotech would make this a new “livable” reality within the next few decades. Can this new immersive tech help us decipher the nature of our own “b… See more.

Oct 31, 2021

The highest amplification in tiny nanoscale devices

Posted by in category: nanotechnology

A team of researchers from the University of Florida, led by Dr. Philip Feng, in collaboration with Prof. Steven Shaw in Florida Institute of Technology, has now demonstrated extremely high-efficient mechanical signal amplification in nanoscale mechanical resonators operating at radio frequency. The devices employed in this research might be the tiniest mechanical resonators exhibiting amplification, and the gain achieved is the highest known for all mechanical devices reported to date.

The displacement is realized based on “parametric pumping or parametric amplification” of mechanical motion. Parametric amplification can be mainly achieved when a parameter of system is modulated by twice multiples of the . A simple example of parametric amplification is a child playing a swing. The child can periodically stand and squat twice in a single period of the swing to increase or “amplify” the swing amplitude without anyone helping to push.

The researchers have realized the parametric amplification in the tiny nanoscale devices. The nanoscale drumhead mechanical parametric amplifiers demonstrated in this research consist of an atomically thin two-dimensional semiconducting molybdenum disulfide (MoS2) membrane where the thickness of the drumheads is 0.7, 2.8, 7.7 nanometer with 1.8 micrometer in diameter and 0.0018–0.020 m3 in volume. The nanodrums are fabricated by transferring nanosheet exfoliated from bulk crystal over microcavities to make suspended atomically thin nanodrums.

Oct 31, 2021

5D Optical Storage: High-Speed Laser Writing Could Pack 500 Terabytes Into CD-Sized Glass Disc

Posted by in categories: computing, nanotechnology

Advances make high-density, 5D optical storage practical for long-term data archiving.

Researchers have developed a fast and energy-efficient laser-writing method for producing high-density nanostructures in silica glass. These tiny structures can be used for long-term five-dimensional (5D) optical data storage that is more than 10,000 times denser than Blue-Ray optical disc storage technology.

“Individuals and organizations are generating ever-larger datasets, creating the desperate need for more efficient forms of data storage with a high capacity, low energy consumption and long lifetime,” said doctoral researcher Yuhao Lei from the University of Southampton in the UK. “While cloud-based systems are designed more for temporary data, we believe that 5D data storage in glass could be useful for longer-term data storage for national archives, museums, libraries or private organizations.”

Oct 30, 2021

Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses

Posted by in categories: biotech/medical, nanotechnology

Universal covid vaccine works well in chimps human trails next. #COVID19 #cure


Immunization of macaques with nanoparticle-conjugated receptor-binding domain of SARS-CoV-2 adjuvanted with 3M-052 and alum results in cross-neutralizing antibodies against bat coronaviruses, SARS-CoV and SARS-CoV-2 variants, and may provide a platform for developing pan-coronavirus vaccines.

Oct 30, 2021

High speed ultrafast laser anisotropic nanostructuring

Posted by in categories: computing, nanotechnology

It is challenging to store the exponentially increasing amount of data in the information age. The multiplexed optical data storage with merits of high data density (hundreds of terabytes/disk), low energy consumption, and long lifetime could open a new era in data storage technology. The recent progress in five-dimensional (5D) optical data storage based on anisotropic nanostructures written by femtosecond (fs) laser pulses in transparent materials reveals its potential for real-world applications, but high writing speed and density remain a major challenge. Here, we propose a method for rapid and energy-efficient writing of highly localized anisotropic nanostructures in silica glass by energy modulated megahertz-rate fs pulses. An isotropic nanovoid is initially generated with pulse energy above the microexplosion threshold and then elongated to an anisotropic nanolamella-like structure via the near-field enhancement effect by lower energy pulses, minimizing the unwanted thermal effects from megahertz-rate fs pulses. The anisotropic nanostructures are exploited for 5D data storage with a rate of 106voxels/s, corresponding to a demonstrated fast information recording of ∼225kB/s and a potentially high-density data storage of ∼500TB/disk.

Oct 29, 2021

MIT Is Building 3D Solar Towers, and So Far They Have Achieved Phenomenal Results

Posted by in categories: nanotechnology, solar power, sustainability

3D solar towers circa 2016.


Improving Efficiency

Most solar panels are placed flat on rooftops because they are designed to harness solar energy when the sun is directly overhead. However, when the angle of the sun’s rays hitting the panel changes, traditional panels quickly become less efficient.

Continue reading “MIT Is Building 3D Solar Towers, and So Far They Have Achieved Phenomenal Results” »

Oct 27, 2021

A New Family of Electromagnetic Pulses: Skyrmions Can Fly!

Posted by in categories: information science, nanotechnology, particle physics

Topology in optics and photonics has been a hot topic since 1,890 where singularities in electromagnetic fields have been considered. The recent award of the Nobel prize for topology developments in condensed matter physics has led to renewed surge in topology in optics with most recent developments in implementing condensed matter particle-like topological structures in photonics. Recently, topological photonics, especially the topological electromagnetic pulses, hold promise for nontrivial wave-matter interactions and provide additional degrees of freedom for information and energy transfer. However, to date the topology of ultrafast transient electromagnetic pulses had been largely unexplored.

In their paper published in the journal Nature Communications, physicists in the UK and Singapore report a new family of electromagnetic pulses, the exact solutions of Maxwell’s equation with toroidal topology, in which topological complexity can be continuously controlled, namely supertoroidal topology. The electromagnetic fields in such supertoroidal pulses have skyrmionic structures as they propagate in free space with the speed of light.

Skyrmions, sophisticated topological particles originally proposed as a unified model of the nucleon by Tony Skyrme in 1,962 behave like nanoscale magnetic vortices with spectacular textures. They have been widely studied in many condensed matter systems, including chiral magnets and liquid crystals, as nontrivial excitations showing great importance for information storing and transferring. If skyrmions can fly, open up infinite possibilities for the next generation of informatics revolution.

Oct 27, 2021

Qubits for the future: YouTube documentary explores how quantum computing could promote sustainability

Posted by in categories: climatology, education, nanotechnology, quantum physics, robotics/AI, sustainability

Laura Hiscott reviews Quantum Technology | Our Sustainable Future by The Quantum Daily.

How could quantum computing help us to fix climate change? This is the question at the heart of Quantum Technology | Our Sustainable Future, a half-hour-long documentary published on YouTube in July.

Continue reading “Qubits for the future: YouTube documentary explores how quantum computing could promote sustainability” »

Oct 26, 2021

A New Tree-Based Material Gives Solid State Batteries a Safety Boost

Posted by in categories: energy, nanotechnology

Trees make everything better. Even EV batteries.

Trees provide the air we breathe, and now, in an interesting turn of events, they might also help to power our electronics. A team of researchers from Brown University and the University of Maryland developed a new material that can be used in solid-state batteries to improve the safety and power of traditional batteries by replacing the liquids typically used in lithium-ion cells, a press statement reveals.

The material in question is a kind of cellulose nanofibril, which takes the form of polymer nanotubes derived from wood. The researchers found that it could be combined with copper to produce a paper-thin material that has an ion conductivity between 10 and 100 times better than other polymer ion conductors.

Oct 23, 2021

Skyrmions can fly!

Posted by in categories: information science, nanotechnology, particle physics

Topology in optics and photonics has been a hot topic since 1,890 where singularities in electromagnetic fields have been considered. The recent award of the Nobel prize for topology developments in condensed matter physics has led to renewed surge in topology in optics with most recent developments in implementing condensed matter particle-like topological structures in photonics. Recently, topological photonics, especially the topological electromagnetic pulses, hold promise for nontrivial wave-matter interactions and provide additional degrees of freedom for information and energy transfer. However, to date the topology of ultrafast transient electromagnetic pulses had been largely unexplored.

In their paper Nat. Commun., physicists in the UK and Singapore report a new family of pulses, the exact solutions of Maxwell’s equation with toroidal topology, in which topological complexity can be continuously controlled, namely supertoroidal topology. The in such supertoroidal pulses have skyrmionic structures as they propagate in free space with the speed of light.

Skyrmions, sophisticated topological particles originally proposed as a unified model of the nucleon by Tony Skyrme in 1,962 behave like nanoscale magnetic vortices with spectacular textures. They have been widely studied in many condensed matter systems, including chiral magnets and liquid crystals, as nontrivial excitations showing great importance for information storing and transferring. If skyrmions can fly, open up infinite possibilities for the next generation of informatics revolution.