Menu

Blog

Archive for the ‘engineering’ category: Page 113

Jun 29, 2021

Speedy nanorobots could someday clean up soil and water, deliver drugs

Posted by in categories: biotech/medical, chemistry, engineering

University of Colorado Boulder researchers have discovered that minuscule, self-propelled particles called “nanoswimmers” can escape from mazes as much as 20 times faster than other passive particles, paving the way for their use in everything from industrial clean-ups to medication delivery.

The findings, published this week in the Proceedings of the National Academy of Sciences, describe how these tiny synthetic nanorobots are incredibly effective at escaping cavities within maze-like environments. These nanoswimmers could one day be used to remediate contaminated soil, improve water filtration or even deliver drugs to targeted areas of the body, like within dense tissues.

“This is the discovery of an entirely new phenomenon that points to a broad potential range of applications,” said Daniel Schwartz, senior author of the paper and Glenn L. Murphy Endowed Professor of chemical and biological engineering.

Jun 25, 2021

MIT Makes a Significant Advance Toward the Full Realization of Quantum Computation

Posted by in categories: computing, engineering, information science, quantum physics

MIT researchers demonstrate a way to sharply reduce errors in two-qubit gates, a significant advance toward fully realizing quantum computation.

MIT researchers have made a significant advance on the road toward the full realization of quantum computation, demonstrating a technique that eliminates common errors in the most essential operation of quantum algorithms, the two-qubit operation or “gate.”

“Despite tremendous progress toward being able to perform computations with low error rates with superconducting quantum bits (qubits), errors in two-qubit gates, one of the building blocks of quantum computation, persist,” says Youngkyu Sung, an MIT graduate student in electrical engineering and computer science who is the lead author of a paper on this topic published on June 16, 2021, in Physical Review X. “We have demonstrated a way to sharply reduce those errors.”

Jun 25, 2021

New Fusion Engine Could Cut Travel Time To Mars Down To Six Weeks

Posted by in categories: engineering, space travel

Circa 2012 Dilithium crystal created.


Fusion Engine Space

Brace yourselves: Researchers at University of Huntsville in Alabama say they are using “Dilithium Crystals” in a new fusion impulse engine that could cut the travel time to Mars down to as little as six weeks, not the six months it takes now.

Continue reading “New Fusion Engine Could Cut Travel Time To Mars Down To Six Weeks” »

Jun 22, 2021

Helion Energy Achieves 100 Million Degrees Celsius Fusion Fuel Temperature and Confirms 16-Month Continuous Operation of Its Fusion Generator Prototype

Posted by in categories: business, climatology, engineering, physics

REDMOND, Wash.—()—Helion Energy (Helion), a clean electricity company committed to creating a new era of clean energy through fusion, today became the first private company to announce exceeding 100 million degrees Celsius in their 6th fusion generator prototype, Trenta. Reaching this temperature is a critical engineering milestone as it is considered the ideal fuel temperature at which a commercial power plant would need to operate. Helion will be presenting these operational results at the 63rd Annual Meeting of the APS Division of Plasma Physics. See abstract below.

“These achievements represent breakthroughs with major implications for how the world meets its expanding future electricity needs while dramatically reducing climate impact on a relevant timescale” Tweet this

Helion also announced their Trenta prototype recently completed a 16-month testing campaign, which pushed fusion fuel performance to unprecedented levels and performed lifetime and reliability testing on key components of the fusion system. Helion will be presenting these results at the 2021 IEEE Pulsed Power Conference & Symposium on Fusion Engineering. See abstract below.

Jun 21, 2021

Scientists at LIGO are one step closer to solving general relativity’s biggest problem

Posted by in categories: cosmology, engineering, particle physics, quantum physics

Scientists are one step closer to solving general relativity’s biggest problem.


To do this, scientists used a new kind of observatory called LIGO (Laser Interferometer Gravitational-wave Observatory) that is fine-tuned to hunt for small disturbances in the fabric of spacetime caused by cosmic collisions, like black hole or neutron star mergers.

But this is only just the beginning of what LIGO can do, a team of international researchers reports in a new study published Thursday in the journal Science. Using new techniques to quantum cool LIGO’s mirrors, the team says that LIGO may soon also help them understand the quantum states of human-sized objects instead of just subatomic particles.

Continue reading “Scientists at LIGO are one step closer to solving general relativity’s biggest problem” »

Jun 19, 2021

Compact quantum computer for server centers

Posted by in categories: computing, engineering, quantum physics, space

Quantum computers developed to date have been one-of-a-kind devices that fill entire laboratories. Now, physicists at the University of Innsbruck have built a prototype of an ion trap quantum computer that can be used in industry. It fits into two 19-inch server racks like those found in data centers throughout the world. The compact, self-sustained device demonstrates how this technology will soon be more accessible.

Over the past three decades, fundamental groundwork for building quantum computers has been pioneered at the University of Innsbruck, Austria. As part of the EU Flagship Quantum Technologies, researchers at the Department of Experimental Physics in Innsbruck have now built a demonstrator for a compact ion trap quantum . “Our experiments usually fill 30-to 50-square-meter laboratories,” says Thomas Monz of the University of Innsbruck. “We were now looking to fit the technologies developed here in Innsbruck into the smallest possible space while meeting standards commonly used in industry.” The new device aims to show that quantum computers will soon be ready for use in data centers. “We were able to show that compactness does not have to come at the expense of functionality,” adds Christian Marciniak from the Innsbruck team.

The individual building blocks of the world’s first compact quantum computer had to be significantly reduced in size. For example, the centerpiece of the quantum computer, the ion trap installed in a , takes up only a fraction of the space previously required. It was provided to the researchers by Alpine Quantum Technologies (AQT), a spin-off of the University of Innsbruck and the Austrian Academy of Sciences which aims to build a commercial quantum computer. Other components were contributed by the Fraunhofer Institute for Applied Optics and Precision Engineering in Jena and laser specialist TOPTICA Photonics in Munich, Germany.

Jun 18, 2021

Cells optimized to improve healthy ageing compound

Posted by in categories: biotech/medical, chemistry, engineering, food, life extension, neuroscience

The population on Earth is increasingly growing and people are expected to live longer in the future. Thus, better and more reliable therapies to treat human diseases such as Alzheimer’s and cardiovascular diseases are crucial. To cope with the challenge of ensuring healthy aging, a group of international scientists investigated the potential of biosynthesising several polyamines and polyamines analogs with already known functionalities in treating and preventing age-related diseases.

One of the most interesting molecules to study was spermidine, which is a natural product already present in people’s blood and an inducer of autophagy that is an essential cellular process for clearing damaged proteins, e.g., misfolded proteins in brain cells that can cause Alzheimer’s. When people get older the level of spermidine in the blood decrease and dietary supplements, or certain are needed to maintain a stable and high level of spermidine in the blood. However, those products are difficult to produce with traditional chemistry due to their structural complexity and extraction of natural resources is neither a commercially viable nor a sustainable approach.

Therefore, the researchers instead decided to open their biochemical toolbox and use classical metabolic engineering strategies to engineer the yeast metabolism to produce polyamines and polyamines analogs.

Jun 16, 2021

Genetically engineered nanoparticle delivers dexamethasone directly to inflamed lungs

Posted by in categories: biotech/medical, engineering, genetics, nanotechnology

Nanoengineers at the University of California San Diego have developed immune cell-mimicking nanoparticles that target inflammation in the lungs and deliver drugs directly where they’re needed. As a proof of concept, the researchers filled the nanoparticles with the drug dexamethasone and administered them to mice with inflamed lung tissue. Inflammation was completely treated in mice given the nanoparticles, at a drug concentration where standard delivery methods did not have any efficacy.

The researchers reported their findings in Science Advances on June 16.

What’s special about these is that they are coated in a cell membrane that’s been genetically engineered to look for and bind to inflamed . They are the latest in the line of so-called cell membrane-coated nanoparticles that have been developed by the lab of UC San Diego nanoengineering professor Liangfang Zhang. His lab has previously used cell membrane-coated nanoparticles to absorb toxins produced by MRSA; treat sepsis; and train the immune system to fight cancer. But while these previous cell membranes were naturally derived from the body’s , the cell membranes used to coat this dexamethasone-filled nanoparticle were not.

Jun 15, 2021

3D bioprinted heart provides new tool for surgeons

Posted by in categories: 3D printing, bioprinting, biotech/medical, engineering

Circa 2020


The FRESH technique of 3D bioprinting was invented in Feinberg’s lab to fill an unfilled demand for 3D printed soft polymers, which lack the rigidity to stand unsupported as in a normal print. FRESH 3D printing uses a needle to inject bioink into a bath of soft hydrogel, which supports the object as it prints. Once finished, a simple application of heat causes the hydrogel to melt away, leaving only the 3D bioprinted object.

Continue reading “3D bioprinted heart provides new tool for surgeons” »

Jun 14, 2021

Manufacturing silicon qubits at scale

Posted by in categories: chemistry, engineering, finance, information science, quantum physics, supercomputing

Circa 2019


As quantum computing enters the industrial sphere, questions about how to manufacture qubits at scale are becoming more pressing. Here, Fernando Gonzalez-Zalba, Tsung-Yeh Yang and Alessandro Rossi explain why decades of engineering may give silicon the edge.

In the past two decades, quantum computing has evolved from a speculative playground into an experimental race. The drive to build real machines that exploit the laws of quantum mechanics, and to use such machines to solve certain problems much faster than is possible with traditional computers, will have a major impact in several fields. These include speeding up drug discovery by efficiently simulating chemical reactions; better uses of “big data” thanks to faster searches in unstructured databases; and improved weather and financial-market forecasts via smart optimization protocols.

Continue reading “Manufacturing silicon qubits at scale” »