Menu

Blog

Archive for the ‘cosmology’ category: Page 219

Dec 14, 2021

Quantum-circuit black hole lasers

Posted by in categories: cosmology, information science, quantum physics

A black hole laser in analogues of gravity amplifies Hawking radiation, which is unlikely to be measured in real black holes, and makes it observable. There have been proposals to realize such black hole lasers in various systems. However, no progress has been made in electric circuits for a long time, despite their many advantages such as high-precision electromagnetic wave detection. Here we propose a black hole laser in Josephson transmission lines incorporating metamaterial elements capable of producing Hawking-pair propagation modes and a Kerr nonlinearity due to the Josephson nonlinear inductance. A single dark soliton obeying the nonlinear Schrödinger equation produces a black hole-white hole horizon pair that acts as a laser cavity through a change in the refractive index due to the Kerr effect.

Dec 14, 2021

Watch Stars Race Around the Milky Way’s Supermassive Black Hole at Mind-Boggling Speeds

Posted by in category: cosmology

The European Southern Observatory’s Very Large Telescope Interferometer (ESO

Created in 1962, the European Southern Observatory (ESO), is a 16-nation intergovernmental research organization for ground-based astronomy. Its formal name is the European Organisation for Astronomical Research in the Southern Hemisphere.

Dec 14, 2021

Bill Gates won’t join the space race. He wants to eradicate malaria and tuberculosis instead

Posted by in categories: cosmology, Elon Musk, internet

Some of the world’s richest men are squaring off in what’s become a rivalry for the ages — the space race. Elon Musk and Jeff Bezos, the two richest men on the planet and the CEOs of SpaceX and Blue Origin, respectively, have grand designs on the cosmos. They predict a universe where the internet is accessible from anywhere, humans are an interplanetary species, and rotating space stations host permanent residents.

But Bill Gates isn’t putting his wealth into these off-planet endeavors.

Gates, the fourth richest person alive, according to Forbes, has what he considers higher aspirations right here on Earth. While internet constellations like SpaceX’s Starlink and Amazon’s proposed Project Kuiper aim to bring for-profit fixes to the world’s pressing connectivity issues, Gates told CNN’s Becky Anderson on Wednesday that more basic problems consume his time now.

Dec 13, 2021

Crater Morphology of Primordial Black Hole Impacts

Posted by in category: cosmology

In this work we propose a novel campaign for constraining relativistically compact MACHO dark matter, such as primordial black holes (PBHs), using the moon as a detector. PBHs of about $10^{19} \textrm{ g}$ to $10^{22} \textrm{ g}$ may be sufficiently abundant to have collided with the moon in the history of the solar system. We show that the crater profiles of a PBH collision differ from traditional impactors and may be detectable in high resolution lunar surface scans now available. Any candidates may serve as sites for in situ measurements to identify high pressure phases of matter which may have formed near the PBH during the encounter. While we primarily consider PBH dark matter, the discussion generalises to the entire family of MACHO candidates with relativistic compactness.

Dec 13, 2021

No need for dark matter: resolved kinematics of the ultra-diffuse galaxy AGC 114905

Posted by in category: cosmology

Abstract: We present new HI interferometric observations of the gas-rich ultra-diffuse galaxy AGC 114,905, which previous work, based on low-resolution data, identified as an outlier of the baryonic Tully-Fisher relation. The new observations, at a spatial resolution $\sim 2.5$ times higher than before, reveal a regular HI disc rotating at about 23 km/s. Our kinematic parameters, recovered with a robust 3D kinematic modelling fitting technique, show that the flat part of the rotation curve is reached. Intriguingly, the rotation curve can be explained almost entirely by the baryonic mass distribution alone. We show that a standard cold dark matter halo that follows the concentration-halo mass relation fails to reproduce the amplitude of the rotation curve by a large margin. Only a halo with an extremely (and arguably unfeasible) low concentration reaches agreement with the data. We also find that the rotation curve of AGC 114,905 deviates strongly from the predictions of Modified Newtonian dynamics. The inclination of the galaxy, which is measured independently from our modelling, remains the largest uncertainty in our analysis, but the associated errors are not large enough to reconcile the galaxy with the expectations of cold dark matter or Modified Newtonian dynamics.

From: Pavel Mancera-Piña [view email]

[v1] Tue, 30 Nov 2021 19:00:01 UTC (7,952 KB)

Dec 13, 2021

How our views on black holes have changed since Einstein

Posted by in categories: cosmology, physics

They’ve become an essential ingredient of astrophysics.


Black holes helped to explain new astronomical discoveries, becoming essential ingredients of astrophysics. Science regarded black holes as abstractions until the 1960s. The recent experimental discovery of gravitational waves has changed our understanding of what black holes are.

In 2016, the LIGO-Virgo collaboration detected gravitational waves generated by two merging black holes, opening a new era of astronomy celebrated by the 2017 Nobel Prize in physics.

Continue reading “How our views on black holes have changed since Einstein” »

Dec 13, 2021

Hubble Image Captures a Stunning Spiral Galaxy in Aquila

Posted by in category: cosmology

This week’s image from the Hubble Space Telescope captures the glorious spiral galaxy UGC 11,537, seen at an angle that shows off both its long spiral arms and the bright clump of stars at its center. It is located 230 million light-years away in the constellation of Aquila (Latin for “eagle”).

As well as being pleasing to look at, this image was collected to further scientific knowledge about the enormous black holes at the galaxy’s heart. “This image came from a set of observations designed to help astronomers weigh supermassive black holes in the centers of distant galaxies,” Hubble scientists wrote. “Hubble’s sharp-eyed observations along with data from ground-based telescopes allowed astronomers to make detailed models of the mass and motions of stars in these galaxies, which in turn helps constrain the mass of supermassive black holes.”

Hubble is back up and running this week, with all four of its currently active instruments operational and collecting science data once again. The telescope had been automatically placed into safe mode following a synchronization error in late October, but the error seems to have been a one-off. In the weeks since the error occurred, the Hubble team turned on first one of the older inactive instruments, then each of the currently active instruments one by one.

Dec 12, 2021

Effect of polarisation and choice of event generator on spectra from dark matter annihilations

Posted by in categories: cosmology, particle physics

If indirect detection searches are to be used to discriminate between dark matter particle models, it is crucial to understand the expected energy spectra of secondary particles such as neutrinos, charged antiparticles and gamma-rays emerging from dark matter annihilations in the local Universe. In this work we study the effect that both the choice of event generator and the polarisation of the final state particles can have on these predictions. For a variety of annihilation channels and dark matter masses, we compare yields obtained with Pythia8 and Herwig7 of all of the aforementioned secondary particle species. We investigate how polarised final states can change these results and do an extensive study of how the polarisation can impact the expected flux of neutrinos from dark matter annihilations in the centre of the Sun.

Dec 12, 2021

Discovering Dark Matter: New Clue From Mysterious Clouds Circling Spinning Black Holes

Posted by in categories: cosmology, physics

Gravitational waves are cosmic ripples in the fabric of space and time that emanate from catastrophic events in space, like collisions of black holes and neutron stars — the collapsed cores of massive supergiant stars. Extremely sensitive gravitational-wave detectors on Earth, like the Advanced LIGO

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory supported by the National Science Foundation and operated by Caltech and MIT. It’s designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. It’s multi-kilometer-scale gravitational wave detectors use laser interferometry to measure the minute ripples in space-time caused by passing gravitational waves. It consists of two widely separated interferometers within the United States—one in Hanford, Washington and the other in Livingston, Louisiana.

Dec 11, 2021

Watch NASA’s IXPE Observatory Launch Into Space — Official Live Broadcast

Posted by in categories: cosmology, satellites

We’re sending a new pair of X-ray eyes into the universe!

NASA’s Imaging X-ray Polarimetry Explorer (IXPE) is our first satellite dedicated to measuring the polarization of X-rays. Polarized light is made up of electric fields that vibrate in a single direction—and IXPE’s state-of-the-art X-ray vision will help scientists study the spin of black holes, the magnetic fields of pulsars, and other cosmic phenomena.

Continue reading “Watch NASA’s IXPE Observatory Launch Into Space — Official Live Broadcast” »