Toggle light / dark theme

This Collection supports and amplifies research related to SDG 9 Industry, Innovation and Infrastructure, SDG11 Sustainable Cities and Communities, SDG12 Responsible Consumption and Production, and SDG 13 Climate Action.

As the global construction industry strives to reduce its environmental footprint, sustainable processes and materials are becoming increasingly vital. Innovation in cement and concrete technologies plays a key role in minimizing resource consumption, lowering carbon emissions, and enhancing long-term resilience. This collection highlights research that advances both sustainable development and application of cement and concrete for the building sector.

Topics of interest include the development of low-carbon cement alternatives, recycling and reuse of concrete materials, 3D concrete printing, and other energy-efficient construction techniques. We welcome contributions from fundamental material research, to applied solutions and large-scale real-world demonstrations.

Can Tesla REALLY Build Millions of Optimus Bots? ## Tesla is poised to revolutionize robotics and sustainable energy by leveraging its innovative manufacturing capabilities and vertical integration to produce millions of Optimus bots efficiently and cost-effectively ## Questions to inspire discussion ## Manufacturing and Production.

S low model count strategy benefit their production? A: Tesla s speed of innovation and ability to build millions of robots quickly gives them a key advantage in mass producing and scaling manufacturing for humanoid robots like Optimus. + s factory design strategies support rapid production scaling? A: Tesla## Cost and Efficiency.

S vertical integration impact their cost structure? A: Tesla s AI brain in-house, Tesla can avoid paying high margins to external suppliers like Nvidia for the training portion of the brain. +## Technology and Innovation.

S experience in other industries benefit Optimus development? A: Tesla s own supercomputer, Cortex, and AI training cluster are crucial for developing and training the Optimus bot## Quality and Reliability.

S manufacturing experience contribute to Optimus quality? A: Tesla## Market Strategy.

S focus on vehicle appeal relate to Optimus production? A: Tesla## Scaling and Demand.

Researchers at the Hong Kong University of Science and Technology (HKUST) have developed the world’s first kilowatt-scale elastocaloric cooling device. The device can stabilize indoor temperatures at a comfortable 21°C–22°C in just 15 minutes, even when outdoor temperatures reach between 30°C and 31°C, marking a significant breakthrough toward the commercial application of elastocaloric solid-state cooling technology.

The research findings have been published in the journal Nature, offering a promising solution to combat climate change and accelerate the low-carbon transformation of the global cooling industry.

As global warming intensifies, the demand for and cooling has been growing, with cooling already accounting for 20% of global electricity consumption. Mainstream vapor compression cooling technology relies on refrigerants with high global warming potential (GWP).

Researchers from Japan and Taiwan have made a groundbreaking discovery, demonstrating for the first time that helium—long considered chemically inert—can bond with iron under extreme pressure. Using a laser-heated diamond anvil cell, they observed this unexpected interaction, suggesting that vast amounts of helium may be present in the Earth’s core. This finding challenges long-held theories about the planet’s internal structure and history and could provide new insights into the primordial nebula from which our solar system originated.

Volcanic eruptions primarily release rocks and minerals, but they can also emit traces of a rare gas known as primordial helium. Unlike the more common isotope, helium-4 (⁴He), which consists of two protons and two neutrons and is continuously produced by radioactive decay, primordial helium—helium-3 (³He)—contains only one neutron and is not formed on Earth. Its presence offers valuable clues about the planet’s deep interior and its connection to cosmic origins.

Given the occasionally high 3 He/4He ratios found in volcanic rocks, especially in Hawaii, researchers have long believed there are primordial materials containing 3 He deep within the mantle. However, graduate student Haruki Takezawa and members of Professor Kei Hirose’s group from the University of Tokyo’s Department of Earth and Planetary Science have now challenged this view with a new take on a familiar experiment — crushing things.

Researchers from Würzburg have experimentally demonstrated a quantum tornado for the first time by refining an established method. In the quantum semimetal tantalum arsenide (TaAs), electrons in momentum space behave like a swirling vortex. This quantum phenomenon was first predicted eight years ago by a Dresden-based founding member of the Cluster of Excellence ct.qmat.

The discovery, a collaborative effort between ct.qmat, the research network of the Universities of Würzburg and Dresden, and international partners, has now been published in Physical Review X.

Scientists have long known that electrons can form vortices in quantum materials. What’s new is the proof that these tiny particles create tornado-like structures in momentum space—a finding that has now been confirmed experimentally. This achievement was led by Dr. Maximilian Ünzelmann, a group leader at ct.qmat—Complexity and Topology in Quantum Matter—at the Universities of Würzburg and Dresden.

Unlocking New Data for Earth Observation

Reliable data is one of the most valuable tools in scientific research. The more data sources scientists can access, the more accurate their findings become. Until recently, researchers in navigation and satellite geodesy saw a major missed opportunity — while thousands of satellites in mega-constellations orbited Earth for communication purposes, their signals couldn’t be used for positioning or Earth observation.

A collaborative research team has introduced a nitrogen-centric framework that explains the light-absorbing effects of atmospheric organic aerosols. Published in Science, this study reveals that nitrogen-containing compounds play a dominant role in the absorption of sunlight by atmospheric organic aerosols worldwide. This discovery signifies a major step towards improving climate models and developing more targeted strategies to mitigate the climate impact of airborne particles.

Atmospheric organic aerosols influence climate by absorbing and scattering sunlight, particularly within the near-ultraviolet to visible range. Due to their complex composition and continuous chemical transformation in the atmosphere, accurately assessing their climate effects has remained a challenge.

The study was jointly led by Prof. Fu Tzung-May, Professor of the School of Environmental Science and Engineering at Southern University of Science and Technology (SUSTech) and National Center for Applied Mathematics Shenzhen (NCAMS), and Prof. Yu Jianzhen, Chair Professor of the Department of Chemistry and the Division of Environment and Sustainability at Hong Kong University of Science and Technology (HKUST).

Neutrinos generated through solar fusion reactions travel effortlessly through the sun’s dense core. Each specific fusion process creates neutrinos with distinctive signatures, potentially providing a method to examine the sun’s internal structure. Multiple neutrino detection observatories on Earth are now capturing these solar particles, which can be analyzed alongside reactor-produced neutrinos with the data eventually enabling researchers to construct a detailed map of the interior of the sun.

The sun is a massive sphere of hot plasma at the center of our solar system and provides the light and heat to make life on Earth possible. Composed mostly of hydrogen and helium, it generates energy through , converting hydrogen into helium in its core. This process releases an enormous amount of energy which we perceive as heat and light.

The sun’s surface, or photosphere, is around 5,500°C, while its core reaches over 15 million°C. It influences everything from our climate to space weather, sending out and occasional bursts of radiation known as . As an average middle-aged star, the sun is about 4.6 billion years old and will (hopefully) continue burning for another 5 billion years before evolving into a red giant and eventually becoming a white dwarf.