Nov 28, 2024
A Superfast Conductor Has Opened the Door for Epically Powerful Batteries
Posted by Jose Ruben Rodriguez Fuentes in category: biotech/medical
Human cells are inspiring the next generation of energy storage.
Human cells are inspiring the next generation of energy storage.
A quiet revolution is brewing in labs around the world, where scientists’ use of AI is growing exponentially. One in three postdocs now use large language models to help carry out literature reviews, coding, and editing. In October, the creators of our AlphaFold 2 system, Demis Hassabis and John Jumper became Nobel Laureates in Chemistry for using AI to predict the structure of proteins, alongside the scientist David Baker, for his work to design new proteins. Society will soon start to feel these benefits more direct ly, with drugs and materials designed with the help of AI currently making their way through development.
In this essay, we take a tour of how AI is transforming scientific disciplines from genomics to computer science to weather forecasting. Some scientists are training their own AI models, while others are fine-tuning existing AI models, or using these models’ predictions to accelerate their research. Scientists are using AI as a scientific instrument to help tackle important problems, such as designing proteins that bind more tightly to disease targets, but are also gradually transforming how science itself is practised.
Researchers at the University of Twente, Netherlands, have made an advancement in bioprinting technology that could transform how we create vascularized tissues. Their innovative bioink, recently featured in Advanced Healthcare Materials, introduces a way to precisely guide the growth and organization of tiny blood vessels within 3D-bioprinted tissues. The tiny blood vessels mimic the intricate networks found in the human body.
3D-printed organs have the potential to revolutionize medicine by providing solutions for organ failure, and tissue damage and developing new therapies. But a major challenge is ensuring these printed tissues receive enough nutrients and oxygen, which is critical for their survival and function. Without blood vessels, these tissues can’t efficiently obtain nutrients or remove waste, limiting their effectiveness. Therefore, the ability to 3D-bioprint blood vessels is a crucial advancement.
Tissue engineers could already position blood vessels during the bioprinting process, but these vessels often remodel unpredictably when cultured in the lab or implanted in the body, reducing the effectiveness of the engineered tissue. The programmable bioink developed by the University of Twente team addresses this issue by providing dynamic control over vessel growth and remodeling over time. This opens new possibilities for creating engineered tissues with long-term functionality and adaptability.
Mechanical switches and protein meshes – this is a new way of looking at one of our most feared diseases.
Bill Faloon discusses advancements in age reversal therapies and their transition from research to clinical application, emphasizing the potential for delaying and reversing biological aging. He highlights advancements in age reversal, discussing therapies like young plasma, gene editing, yamanaka factors and exosome treatments, emphasizing their potential to reverse aging, improve health, and extend lifespan.
Credits to : Age Reversal Network https://age-reversal.net/
Continue reading “How to REVERSE AGING: The Latest Scientific Advances” »
The Quickest Route To Healthy
Linda Jiang is Head of Strategy and Government Partnerships, Healthcare, at Lyft (https://www.lyft.com/healthcare), where she’s responsible for accelerating the growth of the business, driving public sector strategy, and partnering with policymakers and regulators to bring access to the rideshare service to millions of people who need it for healthcare access.
Continue reading “Linda Jiang — Head of Strategy and Government Partnerships, Healthcare, Lyft” »
Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD
Discount Links/Affiliates:
Blood testing (where I get my labs): https://www.ultalabtests.com/partners/michaellustgarten.
Continue reading “Red Light Therapy Reduces Blood Glucose: Glen Jeffery, PhD” »
Researchers from CSIR-Central Leather Research Institute (CLRI), supported by INSPIRE Faculty and WISE Kiran Fellowships, explored the chemistry between proteins and nanozymes to advance artificial enzymes. Their work focuses on using manganese-based oxidase nanozyme (MnN) to crosslink collagen, a key structural protein, aiming to develop biomaterials for future medicinal and biomedical applications.
A tiny, four-fingered “hand” folded from a single piece of DNA can pick up the virus that causes COVID-19 for highly sensitive rapid detection and can even block viral particles from entering cells to infect them, University of Illinois Urbana-Champaign researchers report. Dubbed the NanoGripper, the nanorobotic hand also could be programmed to interact with other viruses or to recognize cell surface markers for targeted drug delivery, such as for cancer treatment.
Led by Xing Wang, a professor of bioengineering and of chemistry at the U. of I., the researchers describe their advance in the journal Science Robotics.
Inspired by the gripping power of the human hand and bird claws, the researchers designed the NanoGripper with four bendable fingers and a palm, all in one nanostructure folded from a single piece of DNA. Each finger has three joints, like a human finger, and the angle and degree of bending are determined by the design on the DNA scaffold.
Researchers at the University of Sydney Nano Institute have made a significant advance in the field of molecular robotics by developing custom-designed and programmable nanostructures using DNA origami.
This innovative approach has potential across a range of applications, from targeted drug delivery systems to responsive materials and energy-efficient optical signal processing. The method uses “DNA origami,” so-called as it uses the natural folding power of DNA, the building blocks of human life, to create new and useful biological structures.
As a proof-of-concept, the researchers made more than 50 nanoscale objects, including a “nano-dinosaur,” a “dancing robot” and a mini-Australia that is 150 nanometers wide, a thousand times narrower than a human hair.