Toggle light / dark theme

New theoretical work explores the onset of rigidity in granular materials and other disordered systems by mapping out the edges of rigid regions.

Phase transitions are a common part of our daily lives. Many of them are intuitive: water transforms into steam or ice, birds spontaneously form a flock, and random piles of marbles suddenly jam together into a solid. Possibly the most basic phase transition, however, is a more abstract version called connectivity percolation (CP). In systems displaying CP, individual units such as persons or polymers are mapped by their contacts—or connectors—to a graph consisting of nodes and edges. As the number of connectors increases, the system switches from being disconnected (filled with small, separate clusters) to being connected (spanned by one large cluster). This connectivity phase transition is commonly seen in polymer solutions and pandemic spreading, but researchers have also used the percolation perspective to describe the onset of mechanical rigidity in disordered systems, otherwise known as rigidity percolation (RP).

University of California, San Diego study suggests new way to personalize mental health care.

Major depressive disorder affects 16.1 million adults in the United States and costs $210 billion annually. While the primary symptoms of depression are psychological, scientists and doctors have come to understand that depression is a complex disease with physical effects throughout the body. For example, measuring markers of cellular metabolism has become an important approach to studying mental illnesses and developing new ways to diagnose, treat, and prevent them.

Study links cellular metabolism with depression.

Reminds me of how the space shuttle moved in orbit. Great idea though hopefully they’ll pass it on to us civilians too. That could be very useful. Though the military sometimes passes their tech to us like the CIA is responsible for some medical science amazingly. Yes I was surprised.


DARPA has selected Aurora Flight Sciences to build a full-scale X-plane to demonstrate the viability of using active flow control (AFC) actuators for primary flight control. The award is Phase 3 of the Control of Revolutionary Aircraft with Novel Effectors (CRANE) program.

The X-65 flight is controlled by using jets of air from a pressurized source to shape the flow of air over the aircraft surface, with AFC effectors on several surfaces to control the plane’s roll, pitch, and yaw. Eliminating external moving parts is expected to reduce weight and complexity and to improve performance.

The X-65 will be built with two sets of control actuators – traditional flaps and rudders as well as AFC effectors embedded across all the lifting surfaces. This will both minimize risk and maximize the program’s insight into control effectiveness. The plane’s performance with traditional control surfaces will serve as a baseline; successive tests will selectively lock down moving surfaces, using AFC effectors instead.

Year 2023 face_with_colon_three


Bioengineers and tissue engineers intend to reconstruct skin equivalents with physiologically relevant cellular and matrix architectures for basic research and industrial applications. Skin pathophysiology depends on skin-nerve crosstalk and researchers must therefore develop reliable models of skin in the lab to assess selective communications between epidermal keratinocytes and sensory neurons.

In a new report now published in Nature Communications, Jinchul Ahn and a research team in , bio-convergence engineering, and therapeutics and biotechnology in South Korea presented a three-dimensional, innervated epidermal keratinocyte layer on a to create a sensory neuron-epidermal keratinocyte co-culture model. The maintained well-organized basal-suprabasal stratification and enhanced barrier function for physiologically relevant anatomical representation to show the feasibility of imaging in the lab, alongside functional analyses to improve the existing co-culture models. The platform is well-suited for biomedical and pharmaceutical research.

Skin: The largest sensory organ of the human body

Breast cancer is the most frequently diagnosed cancer and accounts for 12.5% of all new cancer cases globally. And while the overall incidence has been decreasing and five-year survival rates in the U.S. exceed 90%, the burden of this disease cannot be underestimated.

On December 20, a new study titled “ENPP1 is an innate immune checkpoint of the anticancer cGAMP–STING pathway in breast cancer” was published in the Proceedings of the National Academy of Sciences by a team of Stanford researchers led by Lingyin Li, one of the top experts in the STING pathway in cancer.

Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) is a multifaceted enzyme that plays a significant role in various biological processes. At its core, ENPP1 is known for its ability to break down ATP, a primary energy molecule in the body, into AMP and inorganic pyrophosphate. This activity is crucial in regulating bone mineralization and preventing abnormal calcium deposits in the body. In addition to its role in bone health, ENPP1 is also involved in regulating insulin signaling, which links it to metabolic disorders like diabetes.

In a paper published in npj Imaging, King’s researchers have assessed the use of fertilized chicken eggs as an alternative model that can resolve both ethical and economic issues for preclinical cancer research.

The use of animal models in is a major contributor to the clinical development of drugs and . However, while invaluable tools, the current standard of using mouse models to recreate diseases is expensive, time-intensive, and complicated by both variable tumor take rates and the associated welfare considerations.

Fertilized contain a highly vascularized membrane, known as the chicken chorioallantoic membrane (CAM), which can provide an ideal environment for and study, but to date, relatively few studies have used chick CAM to evaluate novel radiopharmaceuticals.

Medication delivered by a novel gel cured 100% of mice with an aggressive brain cancer, a striking result that offers new hope for patients diagnosed with glioblastoma, one of the deadliest and most common brain tumors in humans.


Cui’s team combined an anticancer drug and an antibody in a solution that self-assembles into a gel to fill the tiny grooves left after a brain tumor is surgically removed. The gel can reach areas that surgery might miss and current drugs struggle to reach to kill lingering cancer cells and suppress tumor growth. The results are published in Proceedings of the National Academy of Sciences.

The gel also seems to trigger an immune response that a mouse’s body struggles to activate on its own when fighting glioblastoma. When the researchers rechallenged surviving mice with a new glioblastoma tumor, their immune systems alone beat the cancer without additional medication. The gel appears to not only fend off cancer but help rewire the immune system to discourage recurrence with immunological memory, researchers said.

Osteoarthritis affects as many as 30 million Americans, but treatment has traditionally been limited to managing symptoms with pain relievers and lifestyle changes. In a new Nature study, YSM researchers identify a new therapeutic target that could help slow and reverse joint damage from osteoarthritis.


Yale researchers have identified a drug target that may alleviate joint degeneration associated with osteoarthritis, a debilitating condition that afflicts as many as 30 million people in the United States alone, they report Jan. 3 in the journal Nature.

Pain relievers and lifestyle changes, such as exercise and reduced excess weight, have long been the therapies most commonly used to treat the joint stiffness and pain caused by the degenerative disease, but there is a pressing need for therapies that can prevent joint breakdown that occurs in osteoarthritis.

It is known that specialized proteins known as sodium channels found in cell membranes produce electrical impulses in “excitable” cells within muscles, the nervous system, and the heart. And in previous research, Yale’s Stephen G. Waxman identified the key role of one particular sodium channel, called Nav1.7, in the transmission of pain signals.

Australian researchers have successfully trialed a novel experiment to address offensive and rude comments in operating theaters by placing “eye” signage in surgical rooms.

The eye images, attached to the walls of an Adelaide orthopaedic hospital’s operating theater without any explanation, had the desired effect of markedly reducing poor behavior among .

Lead researcher University of South Australia Professor Cheri Ostroff attributed the result to a perception of being “watched,” even though the eyes were not real.