Menu

Blog

Archive for the ‘supercomputing’ category: Page 73

Sep 15, 2018

Japan’s science ministry seeks large budget increase, prioritizing massive neutrino detector

Posted by in categories: education, government, particle physics, science, space, supercomputing

Japan’s government is facing serious fiscal challenges, but its main science ministry appears hopeful that the nation is ready to once again back basic research in a big way. The Ministry of Education (MEXT) on 31 August announced an ambitious budget request that would allow Japan to compete for the world’s fastest supercomputer, build a replacement x-ray space observatory, and push ahead with a massive new particle detector.


Proposed successor to Super-Kamiokande, exascale computer and x-ray satellite win backing.

Read more

Sep 10, 2018

AI speeds up climate computations

Posted by in categories: climatology, information science, mathematics, robotics/AI, supercomputing

Realistic climate simulations require huge reserves of computational power. An LMU study now shows that new algorithms allow interactions in the atmosphere to be modeled more rapidly without loss of reliability.

Forecasting global and local climates requires the construction and testing of mathematical . Since such models must incorporate a plethora of physical processes and interactions, climate simulations require enormous amounts of . And even the best models inevitably have limitations, since the phenomena involved can never be modeled in sufficient detail. In a project carried out in the context of the DFG-funded Collaborative Research Center “Waves to Weather”, Stephan Rasp of the Institute of Theoretical Meteorology at LMU (Director: Professor George Craig) has now looked at the question of whether the application of can improve the efficacy of climate modelling. The study, which was performed in collaboration with Professor Mike Pritchard of the University of California at Irvine und Pierre Gentine of Columbia University in New York, appears in the journal PNAS.

General circulation models typically simulate the global behavior of the atmosphere on grids whose cells have dimensions of around 50 km. Even using state-of-the-art supercomputers the relevant that take place in the atmosphere are simply too complex to be modelled at the necessary level of detail. One prominent example concerns the modelling of clouds which have a crucial influence on climate. They transport heat and moisture, produce precipitation, as well as absorb and reflect solar radiation, for instance. Many clouds extend over distances of only a few hundred meters, much smaller than the grid cells typically used in simulations – and they are highly dynamic. Both features make them extremely difficult to model realistically. Hence today’s models lack at least one vital ingredient, and in this respect, only provide an approximate description of the Earth system.

Read more

Aug 27, 2018

The AI that could help make limitless fusion power a reality: Supercomputer set to try and work out how to harness the energy of the sun

Posted by in categories: robotics/AI, supercomputing

An AI is set to try and work out how a potentially limitless supply of energy can be used on Earth.

It could finally solve the mysteries of fusion power, letting researchers capture and control the process that powers the sun and stars.

Continue reading “The AI that could help make limitless fusion power a reality: Supercomputer set to try and work out how to harness the energy of the sun” »

Jul 16, 2018

Supercomputer will simulate “entire regions” of the mouse brain

Posted by in categories: neuroscience, supercomputing

https://youtube.com/watch?v=2qTuZlMvFgY

Researchers involved in the Blue Brain Project – which aims to create a digital reconstruction of the brain – have announced the deployment of a next-generation supercomputer.

mouse brain supercomputer future
Credit: HPE

Continue reading “Supercomputer will simulate ‘entire regions’ of the mouse brain” »

Jul 13, 2018

New AI method increases the power of artificial neural networks

Posted by in categories: information science, robotics/AI, supercomputing

An international team of scientists from Eindhoven University of Technology, University of Texas at Austin, and University of Derby, has developed a revolutionary method that quadratically accelerates artificial intelligence (AI) training algorithms. This gives full AI capability to inexpensive computers, and would make it possible in one to two years for supercomputers to utilize Artificial Neural Networks that quadratically exceed the possibilities of today’s artificial neural networks. The scientists presented their method on June 19 in the journal Nature Communications.

Artificial Neural Networks (or ANN) are at the very heart of the AI revolution that is shaping every aspect of society and technology. But the ANNs that we have been able to handle so far are nowhere near solving very complex problems. The very latest supercomputers would struggle with a 16 million-neuron network (just about the size of a frog brain), while it would take over a dozen days for a powerful desktop computer to train a mere 100,000-neuron network.

Read more

Jul 9, 2018

Non-von Neumann zettaFLOPS supercomputers, yottaFLOPS cryogenic supercomputers and beyond with molecular nanotechnology

Posted by in categories: nanotechnology, supercomputing

Thomas Sterling has retracted his prediction that we will never reach ZettaFLOP computers. He now predicts zettaFLOPS can be achieved in less than 10 years if innovations in non-von Neumann architecture can be scaled. With a change to cryogenic technologies, we can reach yottaFLOPS by 2030.

Read more

Jul 4, 2018

Chinese Physicists’ Quantum Achievement Signals Dawn of Supercomputer

Posted by in categories: particle physics, quantum physics, supercomputing

Chinese physicists realized a genuine entanglement of 18 quantum particles, beating their own world record set in 2016, while the team has set their next goal at 50-qubit entanglement.

The result of the study was published in the US journal Physical Review Letters on June 28. Chinese leading quantum physicist Pan Jianwei led the project. Together with his team, Pan earlier demonstrated quantum entanglement with 10 quantum bits, or “qubits,” in 2016, according to a report sent by Pan’s team to Global Times on Tuesday.

Quantum entanglement is a weird phenomenon which Einstein called “spooky action at a distance” where quantum particles are connected “even if they are at opposite ends of the universe,” an Australia-based Cosmos Magazine reported.

Continue reading “Chinese Physicists’ Quantum Achievement Signals Dawn of Supercomputer” »

Jul 2, 2018

Top 5 Ways Supercomputing Is Impacting Scientific Research

Posted by in categories: cybercrime/malcode, employment, government, supercomputing

Government news resource covering technology, performance, employment, telework, cybersecurity, and more for federal employees.

Read more

Jun 30, 2018

China Extends Lead as Most Prolific Supercomputer Maker

Posted by in categories: government, supercomputing

China has 206 of the top 500 supercomputers — compared to the U.S.’s 124.


America is now home to the world’s speediest supercomputer. But the new list of the 500 swiftest machines underlines how much faster China is building them.

The list, published Monday, shows the Chinese companies and government pulling away as the most prolific producer of supercomputers, with 206 of the top 500. American corporations and the United States government designed and made 124 of the supercomputers on the list.

Continue reading “China Extends Lead as Most Prolific Supercomputer Maker” »

Jun 30, 2018

Extra PCs laying around? Why not mine Bitcoin?

Posted by in categories: bitcoin, cryptocurrencies, economics, internet, supercomputing

I get this question a lot. Today, I was asked to write an answer at Quora.com, a Q&A web site at which I am the local cryptocurrency expert. It’s time to address this issue here at Lifeboat.

Question

I have many PCs laying around my home and office.
Some are current models with fast Intel CPUs. Can
I mine Bitcoin to make a little money on the side?

Answer

Other answers focus on the cost of electricity, the number of hashes or teraflops achieved by a computer CPU or the size of the current Bitcoin reward. But, you needn’t dig into any of these details to understand this answer.

You can find the mining software to mine Bitcoin or any other coin on any equipment. Even a phone or wristwatch. But, don’t expect to make money. Mining Bitcoin with an x86 CPU (Core or Pentium equivalent) is never cost effective—not even when Bitcoin was trading at nearly $20,000. A computer with a fast $1500 graphics card will bring you closer to profitability, but not by much.

Continue reading “Extra PCs laying around? Why not mine Bitcoin?” »

Page 73 of 97First7071727374757677Last