Menu

Blog

Archive for the ‘supercomputing’ category: Page 76

Jan 7, 2017

Moore’s Law Will Soon End, but Progress Doesn’t Have to

Posted by in categories: mobile phones, supercomputing

In 1965, Intel co-founder Gordon Moore published a remarkably prescient paper which observed that the number of transistors on an integrated circuit was doubling every two years and predicted that this pace would lead to computers becoming embedded in homes, cars and communication systems.

That simple idea, known today as Moore’s Law, has helped power the digital revolution. As computing performance has become exponentially cheaper and more robust, we have been able to do a lot more with it. Even a basic smartphone today is more powerful than the supercomputers of past generations.

Yet the law has been fraying for years and experts predict that it will soon reach its limits. However, I spoke to Bernie Meyerson, IBM’s Chief Innovation Officer, and he feels strongly that the end of Moore’s Law doesn’t mean the end of progress. Not by a long shot. What we’ll see though is a shift in emphasis from the microchip to the system as a whole.

Continue reading “Moore’s Law Will Soon End, but Progress Doesn’t Have to” »

Dec 25, 2016

Jülich Installs New QPACE3 Supercomputer for Quantum Chromodynamics

Posted by in categories: augmented reality, cosmology, particle physics, quantum physics, robotics/AI, supercomputing

A new supercomputer has been deployed at the Jülich Supercomputing Center (JSC) in Germany. Called QPACE3, the new 447 Teraflop machine is named for “QCD Parallel Computing on the Cell.”

QPACE3 is being used by the University of Regensburg for a joint research project with the University of Wuppertal and the Jülich Supercomputing Center for numerical simulations of quantum chromodynamics (QCD), which is one of the fundamental theories of elementary particle physics. Such simulations serve, among other things, to understand the state of the universe shortly after the Big Bang, for which a very high computing power is required.

The demand for high performance computers to solve complex applications has risen exponentially, but unfortunately so has their consumption of power. Many supercomputers require more than a megawatt of electricity to operate and annual electricity costs can easily run into millions of Euros. The energy supply is therefore a significant part of the operating costs of a data center. According to recent analyst studies, this represents the second-largest factor in addition to personnel and maintenance costs. The upcoming boom with (3D) video streaming, augmented reality, image recognition and artificial intelligence is driving up the demand for data center capabilities, thereby placing new challenges in the power supply sector.

Read more

Dec 16, 2016

Does The Universe Have a Hard Drive?

Posted by in categories: computing, cosmology, physics, quantum physics, supercomputing

Zura Kakushadze is lead author of this peer reviewed paper published by the Free University of Tbilisi. It describes an information paradox that arises in a materialist’s description of the Universe—if we assume that the Universe is 100% quantum. The observation of the paradox stems from an interdisciplinary thought process whereby the Universe can be viewed as a “quantum computer”.

The presentation is intentionally nontechnical to make it accessible to a wide a readership.

Does the Universe Have a Hard Drive?

Dec 15, 2016

MSFT Stock: Is This Microsoft Corporation’s (MSFT) Next Big Play?

Posted by in categories: finance, robotics/AI, supercomputing

Nice write up and references the Cognitive Toolkit that was leveraged on Skype, Xbox, etc. Also, a nice plug on the QC work.


“Only Cray can bring the combination of supercomputing technologies, supercomputing best practices, and expertise in performance optimization to scale deep learning problems,” said Dr. Mark S. Staveley, Cray’s director of deep learning and machine learning. “We are working to unlock possibilities around new approaches and model sizes, turning the dreams and theories of scientists into something real that they can explore. Our collaboration with Microsoft and CSCS is a game changer for what can be accomplished using deep learning.”

Also Read: Ignore The Financials, MSFT Stock Is Headed Higher : Microsoft Corporation (NASDAQ: MSFT)

Continue reading “MSFT Stock: Is This Microsoft Corporation’s (MSFT) Next Big Play?” »

Dec 14, 2016

IBM’s Watson supercomputer discovers 5 new genes linked to ALS

Posted by in categories: biotech/medical, neuroscience, robotics/AI, supercomputing

IBM Watson is known for its work in identifying cancer treatments and beating contestants on Jeopardy! But now the computing system has expertise in a new area of research: neuroscience.

Watson discovered five genes linked to ALS, sometimes called Lou Gehrig’s disease, IBM announced on Wednesday. The tech company worked with researchers at the Barrow Neurological Institute in Phoenix, Arizona. The discovery is Watson’s first in any type of neuroscience, and suggests that Watson could make discoveries in research of other neurological diseases.

SEE ALSO: This high-tech E.L.F. is guiding confused shoppers with the help of IBM’s Watson.

Read more

Dec 11, 2016

Proof that Moore’s Law has been replaced by a Virtual Moore’s Law that is Accelerating and Bringing the Singularity With It

Posted by in categories: computing, singularity, supercomputing

Introduction

Moore’s Law says that the number of transistors per square inch will double approximately every 18 months. This article will show how many technologies are providing us with a new Virtual Moore’s Law that proves computer performance will at least double every 18 months for the foreseeable future thanks to many new technological developments.

This Virtual Moore’s Law is propelling us towards the Singularity where the invention of artificial superintelligence will abruptly trigger runaway technological growth, resulting in unfathomable changes to human civilization.

Going Vertical

In the first of my “proof” articles two years ago, I described how it has become harder to miniaturize transistors, causing computing to go vertical instead. 2 years ago, Samsung was mass producing 24-layer 3D NAND chips and had announced 32-layer chips. As I write this, Samsung is mass producing 48-layer 3D NAND chips with 64-layer chips rumored to appear within a month or so. Even more importantly, it is expected that by the end of 2017, the majority of NAND chips produced by all companies will be 3D. Currently Samsung and its competitors are working 24/7 to transform their 2D factories to 3D factories causing a dramatic change in how NAND flash chips are created.

Continue reading “Proof that Moore’s Law has been replaced by a Virtual Moore’s Law that is Accelerating and Bringing the Singularity With It” »

Nov 28, 2016

MIT’s new method of radio transmission could one day make wireless VR a reality

Posted by in categories: internet, mobile phones, robotics/AI, supercomputing, virtual reality

If you want to use one of today’s major VR headsets, whether the Oculus Rift, the HTC Vive, or the PS VR, you have to accept the fact that there will be an illusion-shattering cable that tethers you to the small supercomputer that’s powering your virtual world.

But researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) may have a solution in MoVr, a wireless virtual reality system. Instead of using Wi-Fi or Bluetooth to transmit data, the research team’s MoVR system uses high-frequency millimeter wave radio to stream data from a computer to a headset wirelessly at dramatically faster speeds than traditional technology.

There have been a variety of approaches to solving this problem already. Smartphone-based headsets such as Google’s Daydream View and Samsung’s Gear VR allow for untethered VR by simply offloading the computational work directly to a phone inside the headset. Or the entire idea of VR backpacks, which allow for a more mobile VR experience by building a computer that’s more easily carried. But there are still a lot of limitations to either of these solutions.

Continue reading “MIT’s new method of radio transmission could one day make wireless VR a reality” »

Nov 25, 2016

Why the US Is Losing Ground on the Next Generation of Powerful Supercomputers

Posted by in categories: cosmology, supercomputing

“I feel the need — the need for speed.”

The tagline from the 1980s movie Top Gun could be seen as the mantra for the high-performance computing system world these days. The next milestone in the endless race to build faster and faster machines has become embodied in standing up the first exascale supercomputer.

Exascale might sound like an alternative universe in a science fiction movie, and judging by all the hype, one could be forgiven for thinking that an exascale supercomputer might be capable of opening up wormholes in the multiverse (if you subscribe to that particular cosmological theory). In reality, exascale computing is at once more prosaic — a really, really fast computer — and packs the potential to change how we simulate, model and predict life, the universe and pretty much everything.

Continue reading “Why the US Is Losing Ground on the Next Generation of Powerful Supercomputers” »

Nov 19, 2016

Liquid silicon: Computer chips could bridge gap between computation and storage

Posted by in categories: robotics/AI, supercomputing

Computer chips in development at the University of Wisconsin–Madison could make future computers more efficient and powerful by combining tasks usually kept separate by design.

Jing Li, an assistant professor of electrical and computer engineering at UW–Madison, is creating computer chips that can be configured to perform complex calculations and store massive amounts of information within the same integrated unit — and communicate efficiently with other chips. She calls them “liquid silicon.”

“Liquid means software and silicon means hardware. It is a collaborative software/hardware technique,” says Li. “You can have a supercomputer in a box if you want. We want to target a lot of very interesting and data-intensive applications, including facial or voice recognition, natural language processing, and graph analytics.”

Continue reading “Liquid silicon: Computer chips could bridge gap between computation and storage” »

Nov 7, 2016

Optical laser computing Could Power Up Genomics and AI and Optalysys targets one petaflop next year

Posted by in categories: biotech/medical, mathematics, military, physics, robotics/AI, supercomputing

https://youtube.com/watch?v=KPFnmGRZ8GQ

Optalysys’s technology performs a mathematical function called the Fourier transform by encoding data, say a genome sequence, into a laser beam. The data can be manipulated by making light waves in the beam interfere with one another, performing the calculation by exploiting the physics of light, and generating a pattern that encodes the result. The pattern is read by a camera sensor and fed back into a conventional computer’s electronic circuits. The optical approach is faster because it achieves in a single step what would take many operations of an electronic computer.

The technology was enabled by the consumer electronics industry driving down the cost of components called spatial light modulators, which are used to control light inside projectors. The company plans to release its first product next year, aimed at high-performance computers used for processing genomic data. It will take the form of a PCI express card, a standard component used to upgrade PCs or servers usually used for graphics processors. Optalysys is also working on a Pentagon research project investigating technologies that might shrink supercomputers to desktop size, and a European project on improving weather simulations.

Continue reading “Optical laser computing Could Power Up Genomics and AI and Optalysys targets one petaflop next year” »

Page 76 of 95First7374757677787980Last