Menu

Blog

Archive for the ‘quantum physics’ category: Page 125

Mar 22, 2024

Erasure Qubits for Abridged Error Correction

Posted by in categories: computing, particle physics, quantum physics

To operate reliably a quantum computer needs to correct the errors introduced into the system by noise in its hardware. Error-correction approaches typically use “logical” qubits, which are qubits made up of as many as a few thousand “physical” qubits. Logical qubits are much less error prone than physical qubits, but the hardware overhead complicates the realization of fault-tolerant quantum computers based on this approach. Now a team led by Harry Levine and Oskar Painter of the Amazon Web Services Center for Quantum Computing in California has demonstrated a new qubit design with built-in error-detection ability [1]. Painter says this qubit could serve as an alternative building block for error-correcting schemes, substantially reducing complexity.

The demonstrated qubit is an “erasure” qubit, one in which the most likely error type involves the loss, or erasure, of the qubit’s state [2]. This error is easier to spot and correct for than other qubit errors, such as those that flip the qubit’s state. Researchers have previously demonstrated erasure qubits made from single atoms. The new study makes the leap to transmons, the superconducting qubit used in the quantum processors developed by Google and IBM.

The erasure qubit of Levine, Painter, and colleagues contains three transmons. Two of the transmons are coupled together and store a qubit’s worth of information in a single, shared microwave photon. The third transmon reveals the loss of the photon—the erasure—through a shift in its operating frequency. The researchers show that in this qubit erasure errors are the dominant error type and can be detected in real time. The researchers now plan to use their new qubit to build logic gates and error-correcting circuits.

Mar 22, 2024

Princeton Scientists Discover Exotic Quantum Interference Effect in a Topological Insulator Device

Posted by in categories: energy, engineering, quantum physics

In a novel experiment, physicists have observed long-range quantum coherence effects due to Aharonov-Bohm interference in a topological insulator-based device. This finding opens up a new realm of possibilities for the future development of topological quantum physics and engineering. This finding could also affect the development of spin-based electronics, which may potentially replace some current electronic systems for higher energy efficiency and may provide new platforms to explore quantum information science.

The research, published in Nature Physics, is the culmination of more than 15 years of work at Princeton. It came about when Princeton scientists developed a quantum device — called a bismuth bromide (α-Bi4Br4) topological insulator — only a few nanometers thick and used it to investigate quantum coherence.

Scientists have used topological insulators to demonstrate novel quantum effects for more than a decade. The Princeton team developed their bismuth-based insulator in a previous experiment where they demonstrated its effectiveness at room temperature. But this new experiment is the first time these effects have been observed with a very long-range quantum coherence and at a relatively high temperature. Inducing and observing coherent quantum states typically requires temperatures near absolute zero on artificially designed semiconducting materials only in the presence of strong magnetic fields.

Mar 22, 2024

Quantum Entanglement Transforms Next-Generation Sensors

Posted by in categories: information science, particle physics, quantum physics

Researchers have revolutionized quantum sensing with an algorithm that simplifies the assessment of Quantum Fisher Information, thereby enhancing the precision and utility of quantum sensors in capturing minute phenomena.

Quantum sensors help physicists understand the world better by measuring time passage, gravity fluctuations, and other effects at the tiniest scales. For example, one quantum sensor, the LIGO gravitational wave detector, uses quantum entanglement (or the interdependence of quantum states between particles) within a laser beam to detect distance changes in gravitational waves up to one thousand times smaller than the width of a proton!

LIGO isn’t the only quantum sensor harnessing the power of quantum entanglement. This is because entangled particles are generally more sensitive to specific parameters, giving more accurate measurements.

Mar 21, 2024

Quantum Gravity Computer

Posted by in categories: computing, quantum physics

“The Most Powerful Type Of Computing Machine That Is Possible In This Universe”

Aka Hyper Computers they are based on Quantum Computing & Gravity. They are agnostic to Causality i.e. they have Indefinite Causality (Cause & Effect Relationships)

Automatski is 5,000 years ahead of everyone else. It built the worlds first Quantum Gravity Computer in ~2006.

Mar 21, 2024

Spacetime Is Not Necessarily Continuous

Posted by in category: quantum physics

We perceive space and time to be continuous, but if the amazing theory of loop quantum gravity is correct, they actually come in discrete pieces.

By Lee Smolin

Mar 21, 2024

Outside of time: The quantum gravity computer

Posted by in categories: computing, quantum physics

Want to know the answer to a problem before you even try to solve it? New Scientist has the computer for you.

Mar 21, 2024

Quantum gravity computation: you, too, can be an expert in this field

Posted by in categories: computing, quantum physics

I am, I’m slightly embarrassed to admit, quoted pretty extensively in the cover story of this week’s New Scientist magazine (alas, only available to subscribers or those willing to shell out $4.95). The story, by Michael Brooks, is about an interesting recent paper by Lucien Hardy of Perimeter Institute, on the power of “quantum gravity computers.” Lucien’s paper considers the following question: by exploiting quantum fluctuations in the causal structure of spacetime, can one efficiently solve problems that are not efficiently solvable with a garden-variety quantum computer?

As I told Brooks, I really do think this is a hell of a question, one that’s intimately related to the challenge of understanding quantum gravity itself. The trouble is that, until an actual quantum theory of gravity chooses to make itself known to us, almost everything we can say about the question is pure speculation.

But of course, pure speculation is what New Scientist gobbles up with french fries and coleslaw. And so, knowing what kind of story they were going to run, I did my best to advocate giving reality at least a few column inches. Fortunately, the end result isn’t quite as bad as I’d feared.

Mar 21, 2024

AWS Reports Improved Quantum Error Correction based on Dual-rail Erasure Qubit

Posted by in categories: computing, quantum physics

Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons.


AWS today reported demonstrating an improved approach to quantum error correction that accounts for flip and phase errors in qubits with less overhead (redundant qubits) and on time scales that allow for effective error correction. The work, published today in APS Physical Review X, uses what’s called dual-rail erasure qubits.

Broadly, qubits undergo three types, report AWS researchers Harry Levine and Arbel Haim, in a blog (A new building block for error-corrected quantum computers) today, “[The] vast majority of errors (96%) in our dual-rail qubit are erasure errors (leakage to |00 ⟩), with only a small fraction (4%) of residual (silent) bit-flip and phase-flip errors. This is a strong indicator that if we can accurately flag the erasures, then we can efficiently correct most errors that occur in this system.”

Continue reading “AWS Reports Improved Quantum Error Correction based on Dual-rail Erasure Qubit” »

Mar 21, 2024

New method uses classical computers to check accuracy of complex quantum systems

Posted by in categories: computing, quantum physics

Funding needed to drive innovation and make therapies available to all, says co-discoverer Jennifer Doudna.

Mar 21, 2024

Quantum Computing Breakthrough: Scientists Develop New Photonic Approach That Works at Room Temperature

Posted by in categories: computing, information science, quantum physics

Significant advancements have been made in quantum computing, with major international companies like Google and IBM now providing quantum computing services via the cloud. Nevertheless, quantum computers are not yet capable of addressing issues that arise when conventional computers hit their performance ceilings. This limitation is primarily the availability of qubits or quantum bits, i.e., the basic units of quantum information, is still insufficient.

One of the reasons for this is that bare qubits are not of immediate use for running a quantum algorithm. While the binary bits of customary computers store information in the form of fixed values of either 0 or 1, qubits can represent 0 and 1 at one and the same time, bringing probability as to their value into play. This is known as quantum superposition.

This makes them very susceptible to external influences, which means that the information they store can readily be lost. In order to ensure that quantum computers supply reliable results, it is necessary to generate a genuine entanglement to join together several physical qubits to form a logical qubit. Should one of these physical qubits fail, the other qubits will retain the information. However, one of the main difficulties preventing the development of functional quantum computers is the large number of physical qubits required.