Menu

Blog

Archive for the ‘quantum physics’ category: Page 124

Mar 24, 2024

Quantum Tornado Unlocks Mysteries of Black Holes

Posted by in categories: climatology, cosmology, quantum physics

A team of scientists has successfully mimicked black hole conditions by creating a quantum vortex in superfluid helium, shedding light on gravitational interactions and quantum field theories in curved spacetimes.

Scientists have for the first time created a giant quantum vortex to mimic a black hole in superfluid helium that has allowed them to see in greater detail how analog black holes behave and interact with their surroundings.

Research led by the University of Nottingham, in collaboration with King’s College London and Newcastle University, has created a novel experimental platform: a quantum tornado. They have created a giant swirling vortex within superfluid helium that is chilled to the lowest possible temperatures. Through the observation of minute wave dynamics on the superfluid’s surface, the research team has shown that these quantum tornados mimic gravitational conditions near rotating black holes. The research has been published today in Nature.

Mar 23, 2024

New Method Transforms Everyday Materials Like Glass Into Quantum Materials

Posted by in categories: computing, quantum physics

A recent study by scientists from the University of California, Irvine and Los Alamos National Laboratory, published in Nature Communications, reveals a breakthrough method for transforming everyday materials, such as glass, into materials scientists can use to make quantum computers.

“The materials we made are substances that exhibit unique electrical or quantum properties because of their specific atomic shapes or structures,” said Luis A. Jauregui, professor of physics & astronomy at UCI and lead author of the new paper. “Imagine if we could transform glass, typically considered an insulating material, and convert it into efficient conductors akin to copper. That’s what we’ve done.”

Conventional computers use silicon as a conductor, but silicon has limits. Quantum computers stand to help bypass these limits, and methods like those described in the new study will help quantum computers become an everyday reality.

Mar 23, 2024

Nuclear Fusion: Rapid Progress for Inertial Confinement

Posted by in category: quantum physics

Check out my course about quantum mechanics on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Nuclear fusion by inertial confinement has seen some dramatic progress in the past year years. After their big headlines in 2022, the National Ignition Facility has managed to pretty reliably reproduce ignition, and more recently, First Light Fusion collaborated with Sandia Labs on a remarkable experiment.

Continue reading “Nuclear Fusion: Rapid Progress for Inertial Confinement” »

Mar 23, 2024

Can the double-slit experiment distinguish between quantum interpretations?

Posted by in categories: particle physics, quantum physics

Despite the astonishing successes of quantum mechanics, due to some fundamental problems such as the measurement problem and quantum arrival time problem, the predictions of the theory are in some cases not quite clear and unique.


The measurement and quantum arrival time problems have originated various predictions for the join spatiotemporal distribution of particle detection events, derived from different formulations and interpretations of the quantum theory. By reworking the famous double-slit experiment, the authors propose a realizable setup to probe such predictions.

Mar 22, 2024

Discovery of a hidden quantum critical point in two-dimensional superconductors

Posted by in categories: materials, quantum physics

Weak fluctuations in superconductivity, a precursor phenomenon to superconductivity, have been successfully detected by a research group at the Tokyo Institute of Technology (Tokyo Tech). This breakthrough was achieved by measuring the thermoelectric effect in superconductors over a wide range of magnetic fields and over a wide range of temperatures, from much higher than the superconducting transition temperature to very low temperatures near absolute zero. The results of this study were published online in Nature Communications on March 16, 2024.

This revealed the full picture of fluctuations in superconductivity with respect to temperature and magnetic field, and demonstrated that the origin of the anomalous metallic state in magnetic fields—which has been an unsolved problem in the field of two-dimensional superconductivity for 30 years—is the existence of a quantum , where are at their strongest.

Mar 22, 2024

Scientists send quantum messages with magnetism of magnons in a first

Posted by in category: quantum physics

A Helmholtz-Zentrum Dresden-Rossendorf research team has controlled qubits using magnons, magnetic wave-like excitations in microscopic magnetic disks.

Mar 22, 2024

Study outlines spectroscopic signatures of fractionalization in octupolar quantum spin ice

Posted by in category: quantum physics

Quantum spin liquids are fascinating quantum systems that have recently attracted significant research attention. These systems are characterized by a strong competition between interactions, which prevents the establishment of a long-range magnetic order, such as that observed in conventional magnets, where all spins align along the same direction to produce a net magnetic field.

Mar 22, 2024

A 2D ‘antenna’ boosts light emission from carbon nanotubes

Posted by in categories: nanotechnology, particle physics, quantum physics

A flat sheet of atoms can act as a kind of antenna that absorbs light and funnels its energy into carbon nanotubes, making them glow brightly. This advance could aid the development of tiny future light-emitting devices that will exploit quantum effects.

Mar 22, 2024

These ‘Strange Metals’ Bend the Rules of Physics

Posted by in categories: materials, quantum physics

Electrons swarm in a soup of quantum entanglement in a new class of materials called strange metals.

By Douglas Natelson

Mar 22, 2024

Another Twist in the Understanding of Moiré Materials

Posted by in categories: materials, quantum physics

The unexpected observation of an aligned spin polarization in certain twisted semiconductor bilayers calls for improved models of these systems.

If you take two overlapping tiled patterns and rotate one with respect to the other, new patterns will emerge. This motif has been used in art and architecture for millennia. Over the past 15 years, materials physicists have used a similar strategy to realize new material properties. In one implementation, two material monolayers with a hexagonal atomic lattice are overlaid with an angle between the two lattices, resulting in an additional long-range lattice structure known as a moiré pattern. In 2021, scientists observed the so-called quantum anomalous Hall (QAH) effect in such a twisted bilayer, formed of MoTe2 and WSe2 monolayers [1]. Now Zui Tao at Cornell University and colleagues have used optical spectroscopy to study the interaction between these two monolayers when they are in the QAH state [2].