Menu

Blog

Archive for the ‘physics’ category: Page 6

Dec 10, 2024

Scientists Discover Radio-Like Communication in Ancient Bacteria

Posted by in categories: biological, physics

Cyanobacteria use an AM radio-like principle to coordinate cell division with circadian rhythms, encoding information through pulse amplitude modulation.

Cyanobacteria, an ancient group of photosynthetic bacteria, have been discovered to regulate their genes using the same physics principle used in AM radio transmission.

New research published in Current Biology has found that cyanobacteria use variations in the amplitude (strength) of a pulse to convey information in single cells. The finding sheds light on how biological rhythms work together to regulate cellular processes.

Dec 9, 2024

Disproving the Fine-tuned Universe Theory

Posted by in categories: cosmology, physics

Sean Michael Carroll (born 5 October 1966) is a cosmologist and Physics professor specializing in dark energy and general relativity. He is a research professor in the Department of Physics at the California Institute of Technology. He has been a contributor to the physics blog Cosmic Variance, and has published in scientific journals and magazines such as Nature, Seed, Sky \& Telescope, and New Scientist.
https://en.wikipedia.org/wiki/Sean_M

Other videos related to challenging or debunking the fine tuning argument

Continue reading “Disproving the Fine-tuned Universe Theory” »

Dec 9, 2024

Scientists say the universe is constantly vibrating. What’s causing it?

Posted by in categories: cosmology, physics

Scientists in Australia have gathered evidence that our universe is constantly vibrating. They used the largest gravitational wave detector to confirm the earlier reports that there is an ongoing rumble which is likely caused by black holes at the centre of galaxies colliding with each other.

The detector looked at several rapidly spinning neutron stars across the galaxy and discovered that the gravitational wave background might be louder than previously thought, The Conversation reported.

The study carried out by Matthew Miles, Swinburne University of Technology and Rowina Nathan, Monash University, was published in the Monthly Notices of the Royal Astronomical Society.

Dec 7, 2024

This Theory of Everything Actually Makes a Prediction: New Physics in Black Holes

Posted by in categories: computing, cosmology, mathematics, open access, physics

Learn science, computer science, and mathematics in the easiest and most engaging way possible with Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Mathematician Stephen Wolfram has attempted to develop a theory of everything using hypergraphs, which are essentially sets of graphs that can describe space-time. Recently, another mathematician named Jonathan Gorard has used hypergraphs to describe what happens if a black hole accretes matter. He claims that evidence for hypergraphs should be observable in the energy that is emitted during the accretion. Big if true, as they say. Let’s take a look.

Continue reading “This Theory of Everything Actually Makes a Prediction: New Physics in Black Holes” »

Dec 6, 2024

NASA’s Swift Studies Gas-Churning Monster Black Holes

Posted by in categories: cosmology, physics

Scientists using observations from NASA’s Neil Gehrels Swift Observatory have discovered, for the first time, the signal from a pair of monster black holes disrupting a cloud of gas in the center of a galaxy.

“It’s a very weird event, called AT 2021hdr, that keeps recurring every few months,” said Lorena Hernández-García, an astrophysicist at the Millennium Institute of Astrophysics, the Millennium Nucleus on Transversal Research and Technology to Explore Supermassive Black Holes, and University of Valparaíso in Chile. “We think that a gas cloud engulfed the black holes. As they orbit each other, the black holes interact with the cloud, perturbing and consuming its gas. This produces an oscillating pattern in the light from the system.”

A paper about AT 2021hdr, led by Hernández-García, was published Nov. 13 in the journal Astronomy and Astrophysics.

Dec 6, 2024

Mapping the Gravitational Wave Universe

Posted by in categories: mapping, physics, space

Astronomers have unveiled the most detailed map of the gravitational wave background to date, using pulsar timing arrays and the extraordinary sensitivity of the MeerKAT radio telescope. In my new co-author paper, we find potential tantalising hints of a “hot spot” in the gravitational wave map.

Dec 4, 2024

DeepMind’s Genie 2 can generate interactive worlds that look like video games

Posted by in categories: physics, robotics/AI

DeepMind, Google’s AI research org, has unveiled a model that can generate an “endless” variety of playable 3D worlds.

Called Genie 2, the model — the successor to DeepMind’s Genie, which was released earlier this year — can generate an interactive, real-time scene from a single image and text description (e.g. “A cute humanoid robot in the woods”). In this way, it’s similar to models under development by Fei-Fei Li’s company, World Labs, and Israeli startup Decart.

DeepMind claims that Genie 2 can generate a “vast diversity of rich 3D worlds,” including worlds in which users can take actions like jumping and swimming by using a mouse or keyboard. Trained on videos, the model’s able to simulate object interactions, animations, lighting, physics, reflections, and the behavior of “NPCs.”

Dec 4, 2024

Large radio jet discovered in quasar J1601+3102

Posted by in categories: cosmology, physics

An international team of astronomers has observed an extremely radio-loud quasar known as J1601+3102. As a result, they found that the quasar hosts a large extended radio jet. The discovery is reported in a research paper published Nov. 25 on the arXiv preprint server.

Quasars, or quasi-stellar objects (QSOs), are (AGN) of very high luminosity powered by (SMBHs), emitting observable in radio, infrared, visible, ultraviolet and X-ray wavelengths. They are among the brightest and most distant objects in the known universe, and serve as fundamental tools for numerous studies in astrophysics as well as cosmology.

J1601+3102 is an extremely radio-loud quasar at a redshift of 4.9, discovered in 2022. It has a radio flux at a level of 69 mJy, bolometric luminosity of about 26 quattuordecillion erg/s and a steep spectral index.

Dec 3, 2024

Astronomers Find New Planet in Kepler-51 System, Challenging Models of ‘Super-Puffs’

Posted by in categories: evolution, physics, space

“Kepler-51e has an orbit slightly larger than Venus and is just inside the star’s habitable zone, so a lot more could be going on beyond that distance if we take the time to look,” said Dr. Jessica Libby-Roberts.


How many exoplanets are in the cosmos and what can they tell us about planetary formation and evolution? This is what a recent study published in The Astronomical Journal hopes to address as an international team of more than 50 researchers announced the discovery of Kepler-51e, which is the fourth planet residing in the Kepler-51 system. This discovery holds the potential to expand our knowledge of exoplanets, specifically regarding their formation and evolution, as Kepler-51e challenges previous notions about low-density exoplanets, also called “puff planets” or “Super-Puffs”

“Super puff planets are very unusual in that they have very low mass and low density,” said Dr. Jessica Libby-Roberts, who is a Postdoctoral Scholar in the Department of Astronomy and Astrophysics at Penn State University and second author of the study. “The three previously known planets that orbit the star, Kepler-51, are about the size of Saturn but only a few times the mass of Earth, resulting in a density like cotton candy.”

Continue reading “Astronomers Find New Planet in Kepler-51 System, Challenging Models of ‘Super-Puffs’” »

Dec 3, 2024

Cheerios effect inspires novel robot design

Posted by in categories: education, physics, robotics/AI

There’s a common popular science demonstration involving “soap boats,” in which liquid soap poured onto the surface of water creates a propulsive flow driven by gradients in surface tension. But it doesn’t last very long since the soapy surfactants rapidly saturate the water surface, eliminating that surface tension. Using ethanol to create similar “cocktail boats” can significantly extend the effect because the alcohol evaporates rather than saturating the water.

That simple classroom demonstration could also be used to propel tiny robotic devices across liquid surfaces to carry out various environmental or industrial tasks, according to a preprint posted to the physics arXiv. The authors also exploited the so-called “Cheerios effect” as a means of self-assembly to create clusters of tiny ethanol-powered robots.

As previously reported, those who love their Cheerios for breakfast are well acquainted with how those last few tasty little “O” s tend to clump together in the bowl: either drifting to the center or to the outer edges. The “Cheerios effect is found throughout nature, such as in grains of pollen (or, alternatively, mosquito eggs or beetles) floating on top of a pond; small coins floating in a bowl of water; or fire ants clumping together to form life-saving rafts during floods. A 2005 paper in the American Journal of Physics outlined the underlying physics, identifying the culprit as a combination of buoyancy, surface tension, and the so-called ” meniscus effect.”

Page 6 of 330First345678910Last