Menu

Blog

Archive for the ‘particle physics’ category: Page 270

Jul 19, 2022

Scientists hack fly brains to make them remote controlled

Posted by in categories: cybercrime/malcode, engineering, genetics, nanotechnology, neuroscience, particle physics

Researchers at Rice University have shown how they can hack the brains of fruit flies to make them remote controlled. The flies performed a specific action within a second of a command being sent to certain neurons in their brain.

The team started by genetically engineering the flies so that they expressed a certain heat-sensitive ion channel in some of their neurons. When this channel sensed heat, it would activate the neuron – in this case, that neuron caused the fly to spread its wings, which is a gesture they often use during mating.

Continue reading “Scientists hack fly brains to make them remote controlled” »

Jul 19, 2022

Researcher uses graphene for same-time, same-position biomolecule isolation and sensing

Posted by in categories: materials, particle physics

New research led by University of Massachusetts Amherst assistant professor Jinglei Ping has overcome a major challenge to isolating and detecting molecules at the same time and at the same location in a microdevice. The work, recently published in ACS Nano, demonstrates an important advance in using graphene for electrokinetic biosample processing and analysis, and could allow lab-on-a-chip devices to become smaller and achieve results faster.

The process of detecting biomolecules has been complicated and time-consuming. “We usually first have to isolate them in a complex medium in a device and then send them to another device or another spot in the same device for detection,” says Ping, who is in the College of Engineering’s Mechanical and Industrial Engineering Department and is also affiliated with the university’s Institute of Applied Life Sciences. “Now we can isolate them and detect them at the same microscale spot in a microfluidic device at the same time—no one has ever demonstrated this before.”

His lab achieved this advance by using graphene, a one-atom-thick honeycomb lattice of carbon atoms, as microelectrodes in a .

Jul 19, 2022

A quantum wave in two crystals

Posted by in categories: particle physics, quantum physics

Particles can move as waves along different paths at the same time—this is one of the most important findings of quantum physics. A particularly impressive example is the neutron interferometer: neutrons are fired at a crystal, the neutron wave is split into two portions, which are then superimposed on each other again. A characteristic interference pattern can be observed, which proves the wave properties of matter.

Such neutron interferometers have played an important role for precision measurements and research for decades. However, their size has been limited so far because they worked only if carved from a single piece of crystal. Since the 1990s, attempts have also been made to produce interferometers from two separate crystals—but without success. Now a team from TU Wien, INRIM Turin and ILL Grenoble has achieved precisely this feat, using a high-precision tip-tilt platform for the crystal alignment. This opens up completely new possibilities for quantum measurements, including research on quantum effects in a gravitational field.

Jul 18, 2022

Ionization of Gravitational Atoms

Posted by in categories: cosmology, particle physics

By: William Brown, Biophysicist at the Resonance Science Foundation

Stellar mass black holes, like elementary particles, are remarkably simple objects. They have three primary observable properties: mass, spin, and electric charge. The similarities with elementary particles, like the proton, doesn’t stop there, as stellar mass black holes in binary systems can also form bound and unbound states due to interaction of orbital clouds (from boson condensates), uncannily analogous to the behavior and properties of atoms.

Continue reading “Ionization of Gravitational Atoms” »

Jul 18, 2022

Microsoft’s Project AirSim is pushing drone simulation software to new heights

Posted by in categories: business, drones, particle physics, robotics/AI

How do you teach an autonomous drone to fly itself? Practice, practice, practice. Now Microsoft is offering a way to put a drone’s control software through its paces millions of times before the first takeoff.

The cloud-based simulation platform, Project AirSim, is being made available in limited preview starting today, in conjunction with this week’s Farnborough International Airshow in Britain.

Continue reading “Microsoft’s Project AirSim is pushing drone simulation software to new heights” »

Jul 18, 2022

MIT Physicists Harness Quantum “Time Reversal” for Detecting Gravitational Waves and Dark Matter

Posted by in categories: cosmology, particle physics, quantum physics

A new technique to measure vibrating atoms could improve the precision of atomic clocks and of quantum sensors for detecting dark matter or gravitational waves.

Gravitational waves are distortions or ripples in the fabric of space and time. They were first detected in 2015 by the Advanced LIGO detectors and are produced by catastrophic events such as colliding black holes, supernovae, or merging neutron stars.

Jul 18, 2022

Chemists Just Rearranged Atomic Bonds in a Single Molecule For The First Time

Posted by in categories: chemistry, engineering, particle physics, transportation

So precise.


If chemists built cars, they’d fill a factory with car parts, set it on fire, and sift from the ashes pieces that now looked vaguely car-like.

When you’re dealing with car-parts the size of atoms, this is a perfectly reasonable process. Yet chemists yearn for ways to reduce the waste and make reactions far more precise.

Continue reading “Chemists Just Rearranged Atomic Bonds in a Single Molecule For The First Time” »

Jul 17, 2022

Deep Space ‘Ghost Particle’ Reveals Clue in Centuries-Old Cosmic Mystery

Posted by in categories: cosmology, particle physics

Scientists tracked a neutrino back to a violent black hole — and it could help explain where elusive cosmic rays originate.

Jul 17, 2022

Scientists revealed for the first time the origin of neutrinos

Posted by in categories: cosmology, particle physics

An international research team led by the University of Würzburg and the University of Geneva (UNIGE) is shedding light on one aspect of this mystery: neutrinos are thought to be born in blazars, galactic nuclei fed by supermassive black holes.

Sara Buson has always thought of it as a significant task. In 2017, the researcher and his associates introduced a blazar (TXS 0506+056) as a potential neutrino source for the first time. That study sparked a scientific debate about whether there truly is a connection between blazars and high-energy neutrinos.

After taking this initial, positive step, Prof. Buson’s team received funding from the European Research Council to launch an ambitious multi-messenger research project in June 2021. Analyzing numerous signals (or “messengers,” for example, neutrinos) from the Universe is required. The primary objective is to shed light on the origin of astrophysical neutrinos, potentially confirming blazars as the first highly certain source of high-energy extragalactic neutrinos.

Jul 17, 2022

Tetraquarks and pentaquarks: “Unnatural” forms of exotic matter have been found

Posted by in category: particle physics

Scientists have found three new examples of a very exotic form of matter made of quarks. They can yield insights into the early Universe.


View insights.