Menu

Blog

Archive for the ‘nanotechnology’ category: Page 69

Sep 4, 2023

Molecular assembler

Posted by in categories: bioengineering, biological, chemistry, food, nanotechnology, particle physics, robotics/AI

A molecular assembler, as defined by K. Eric Drexler, is a “proposed device able to guide chemical reactions by positioning reactive molecules with atomic precision”. A molecular assembler is a kind of molecular machine. Some biological molecules such as ribosomes fit this definition. This is because they receive instructions from messenger RNA and then assemble specific sequences of amino acids to construct protein molecules. However, the term “molecular assembler” usually refers to theoretical human-made devices.

Beginning in 2007, the British Engineering and Physical Sciences Research Council has funded development of ribosome-like molecular assemblers. Clearly, molecular assemblers are possible in this limited sense. A technology roadmap project, led by the Battelle Memorial Institute and hosted by several U.S. National Laboratories has explored a range of atomically precise fabrication technologies, including both early-generation and longer-term prospects for programmable molecular assembly; the report was released in December, 2007. In 2008 the Engineering and Physical Sciences Research Council provided funding of 1.5 million pounds over six years for research working towards mechanized mechanosynthesis, in partnership with the Institute for Molecular Manufacturing, amongst others. Likewise, the term “molecular assembler” has been used in science fiction and popular culture to refer to a wide range of fantastic atom-manipulating nanomachines, many of which may be physically impossible in reality. Much of the controversy regarding “molecular assemblers” results from the confusion in the use of the name for both technical concepts and popular fantasies. In 1992, Drexler introduced the related but better-understood term “molecular manufacturing”, which he defined as the programmed “chemical synthesis of complex structures by mechanically positioning reactive molecules, not by manipulating individual atoms”.This article mostly discusses “molecular assemblers” in the popular sense. These include hypothetical machines that manipulate individual atoms and machines with organism-like self-replicating abilities, mobility, ability to consume food, and so forth. These are quite different from devices that merely (as defined above) “guide chemical reactions by positioning reactive molecules with atomic precision”.
Because synthetic molecular assemblers have never been constructed and because of the confusion regarding the meaning of the term, there has been much controversy as to whether “molecular assemblers” are possible or simply science fiction. Confusion and controversy also stem from their classification as nanotechnology, which is an active area of laboratory research which has already been applied to the production of real products; however, there had been, until recently, no research efforts into the actual construction of “molecular assemblers”.
Nonetheless, a 2013 paper by David Leigh’s group, published in the journal Science, details a new method of synthesizing a peptide in a sequence-specific manner by using an artificial molecular machine that is guided by a molecular strand. This functions in the same way as a ribosome building proteins by assembling amino acids according to a messenger RNA blueprint. The structure of the machine is based on a rotaxane, which is a molecular ring sliding along a molecular axle. The ring carries a thiolate group which removes amino acids in sequence from the axle, transferring them to a peptide assembly site. In 2018, the same group published a more advanced version of this concept in which the molecular ring shuttles along a polymeric track to assemble an oligopeptide that can fold into a α-helix that can perform the enantioselective epoxidation of a chalcone derivative (in a way reminiscent to the ribosome assembling an enzyme). In another paper published in Science in March 2015, chemists at the University of Illinois report a platform that automates the synthesis of 14 classes of small molecules, with thousands of compatible building blocks. In 2017 David Leigh’s group reported a molecular robot that could be programmed to construct any one of four different stereoisomers of a molecular product by using a nanomechanical robotic arm to move a molecular substrate between different reactive sites of an artificial molecular machine. An accompanying News and Views article, titled ‘A molecular assembler’, outlined the operation of the molecular robot as effectively a prototypical molecular assembler.

Continue reading “Molecular assembler” »

Sep 4, 2023

Self-assembling nanotechnology

Posted by in category: nanotechnology

https://youtube.com/watch?v=1kWApU3o6ko

This is a sequence from a 3-minute animation that examines a unique formulation for building an effective therapy using the latest in nanotechnology, including monomers that organize into a controlled, self-assembling nanotube.

We worked very closely with our clients to deliver a detailed, accurate visualization of key attributes such as nanotube morphology, organization of dimers, and overall formation of the lanreotide nanotube.

Aug 31, 2023

What Exactly Is Nanotechnology? Iron Man Nanotech, A New Frontier, Nanotechnology explained

Posted by in categories: education, media & arts, mobile phones, nanotechnology

Nanotechnology is without a doubt one of the most exciting future technologies, but what is it exactly? And how will it benefit mankind? Well sit back and get comfy because in todays video, we will be answering all of those questions and more!IPhone wireless charging cases — https://amzn.to/3bz0oRg.
IPhone Backup — https://amzn.to/3w8Usbj.
Wireless Earbuds — https://amzn.to/2ZTjwau.
IPhone Bargains — https://amzn.to/3jXvCGb**** Gears and Equipment we use****
1. Fully Automatic Espresso Machine — https://amzn.to/3bdHcbr.
2. Perfect Desk Chair — https://amzn.to/2ZlMNd2
3. Wireless Mechanical Keyboard — https://amzn.to/3pA71Lw.
4. Wireless DTS Headphone — https://amzn.to/3juz2Qv.
5. Vocal Microphone — https://amzn.to/2XEDsN4
6. UltraWide Monitor — https://amzn.to/3jyteWg**** Free Handy Tools YOU must try ****Tubebuddy In-depth channel/video analysis– https://bit.ly/3y0SOc6
Amazon Prime — https://amzn.to/3mb0BzG
Epidemic Music — https://bit.ly/3FDplbT
Fiverr — Freelance Marketplace — https://bit.ly/3FFARnL
Here at Future Now we aim to bring you the most informative, fascinating and engaging Technology videos on YouTube.🔔 Subscribe To Our Channel: https://bit.ly/3nRoVH8
Copyright Disclaimer:
Under section 107 of the Copyright Act 1976, allowance is made for “fair use” for purposes such as criticism, comment, news reporting, teaching, scholarship, education and research. Fair use is a use permitted by copyright statute that might otherwise be infringing. Non-profit, educational or personal use tips the balance in favor of fair use. *DISCLOSURE*
We are affiliated, but not sponsored by any product featured in this video.
Some links in the description are affiliate links to products, which means if you click on them and buy the product, we will receive a small commission.
Not being sponsored allows us to keep our own opinions and provide product reviews without bias. From the millions of products, we appreciate your support.#NanoTech #Nanotechnology #NanoTechHacking

Aug 31, 2023

The Nano Robots Inside You

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Inside of you, at all times, there are trillions of natural nano robots walking around, taking out the trash, and packaging strands of DNA. Below the calm, ordered exterior of a living organism lies a complex collection of molecular machines working together to create something greater than themselves. Physicist and author of “Life’s Ratchet” Peter Hoffmann shows us the tiny city beneath the surface.

Watch the full program here: https://youtu.be/FzFY5ms3AUc.
Original program date: May 30, 2013

Continue reading “The Nano Robots Inside You” »

Aug 30, 2023

Biopolymer Photonics: From Nature to Nanotechnology

Posted by in categories: materials, nanotechnology

Simple heterojunction combines many functions in a single component.

Aug 30, 2023

New Research Sheds Light on the Formation of One of Nature’s Most Fundamental Molecules

Posted by in categories: biotech/medical, genetics, nanotechnology

Life runs on ribosomes. Every cell across the globe requires ribosomes to convert genetic data into the vital proteins required for the organism’s operation, and, subsequently, for the production of more ribosomes. However, scientists still lack a clear understanding of how these essential nanomachines are assembled.

Now, new high-resolution images of the large ribosomal subunit are shedding light on how arguably nature’s most fundamental molecule coalesces in human cells. The findings, published in Science, bring us one step closer to a complete picture of ribosome assembly.

“We now have a pretty good idea of how the large ribosomal subunit is assembled in humans,” says Rockefeller’s Sebastian Klinge. “We still have quite a few gaps in our understanding, but we certainly now have a much better idea than we had before.”

Aug 30, 2023

Nano-Biological Computing — Quantum Computer Alternative!

Posted by in categories: biological, computing, nanotechnology, quantum physics

Subscribe here: https://goo.gl/9FS8uF
Check out the previous episode: https://www.youtube.com/watch?v=X5lpOskKF9I
Become a Patreon!: https://www.patreon.com/ColdFusion_TV

Here it is, the bio computer. A new type of parallel computing method that could rival the infamous quantum computer at a much lower price while being more practical to boot.

Continue reading “Nano-Biological Computing — Quantum Computer Alternative!” »

Aug 30, 2023

New fuel cell architecture uses nanowires to deliver durability

Posted by in categories: economics, life extension, nanotechnology

A promising, more durable fuel cell design could help transform heavy-duty trucking and other clean fuel cell applications. Consisting of nanowires that are less susceptible to corrosion than other designs, the innovative electrode—the heart of a polymer electrolyte-membrane fuel cell—could usher in a new era for fuel cells, which use hydrogen as emission-free power for vehicles.

“In real-world terms, this means that we can have a more durable fuel cell that will provide high fuel economy over a longer lifetime,” said Jacob Spendelow, a scientist with the Los Alamos National Laboratory team that described its results in the journal Advanced Materials. “This work demonstrates that we can get rid of conventional carbon-based catalyst supports, eliminating the degradation problems associated with carbon corrosion, while still achieving high fuel cell performance.”

The improved durability makes this fuel cell a promising candidate for use in heavy-duty trucking applications, which require fuel cell lifetimes of more than 25,000 hours.

Aug 27, 2023

New technique opens door for encoding data on single photons

Posted by in categories: encryption, nanotechnology, quantum physics

Researchers at Los Alamos National Laboratory have successfully developed a new way to produce a specific type of photon that could prove critical for quantum data exchange, notably encryption. The specific kind of photons, called “circularly polarized light,” have thus far proved challenging to create and control, but this new technique makes the process easier and, importantly, cheaper. This was achieved, the team explains, by stacking two different, atomically thin materials to “twist” (polarize) photons in a predictable fashion.

Encoded, “twisted,” photons

Continue reading “New technique opens door for encoding data on single photons” »

Aug 27, 2023

Gilded mysteries unveiled: Ancient art meets nanotechnology in nanoscale goldbeating

Posted by in categories: biotech/medical, nanotechnology

Goldbeating, an age-old craft pioneered by ancient Egyptian artisans more than five millennia ago, involves the meticulous thinning of bulk gold into gossamer-like leaves. Throughout history, this intricate process has adorned various masterpieces, such as the tombs of Thebes and Saqqara, and has cemented its place in art and adornments across cultures. Today, nanoscale gold is used not only for decorating fancy desserts, but is indispensable for modern applications ranging from microelectronics to nanomedicine.

Page 69 of 306First6667686970717273Last