Menu

Blog

Archive for the ‘nanotechnology’ category: Page 65

Sep 27, 2023

Unveiling Nanoscale Wonders: Carbon-Based Quantum Technology

Posted by in categories: computing, finance, nanotechnology, quantum physics

Quantum technology holds immense promise, yet it is riddled with complexity. Anticipated to usher in a slew of technological advancements in the upcoming decades, it is set to offer us more compact and accurate sensors, robustly secure communication networks, and high-capacity computers. These advancements will outpace the capabilities of present computing technologies, aiding in the swift development of new drugs and materials, controlling financial markets, and enhancing weather forecasting.

To realize these benefits, we require what are termed as quantum materials, which display significant quantum physical effects. One such material is graphene.

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-dimensional hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes of carbon, including graphite, charcoal, carbon nanotubes, and fullerenes. In proportion to its thickness, it is about 100 times stronger than the strongest steel.

Sep 27, 2023

Nanoscience Gives New Meaning to “Flash Tattoo”

Posted by in category: nanotechnology

A new study reveals a process for tattooing gold nanopatterns onto single cells. Could this pave the way for electrode arrays, antennae, and circuits on living cells and tissues?

Sep 25, 2023

Scientists develop nanomaterials using a bottom-up approach

Posted by in categories: nanotechnology, particle physics

Scientists from the Friedrich Schiller University Jena and the Friedrich Alexander University Erlangen-Nuremberg, both Germany, have successfully developed nanomaterials using a so-called bottom-up approach. As reported in the journal ACS Nano, they exploit the fact that crystals often grow in a specific direction during crystallization. These resulting nanostructures could be used in various technological applications.

“Our structures could be described as worm-like rods with decorations,” explains Prof. Felix Schacher. “Embedded in these rods are ; in our case, this was silica. However, instead of silica, conductive nanoparticles or semiconductors could also be used—or even mixtures, which can be selectively distributed in the nanocrystals using our method,” he adds. Accordingly, the range of possible applications in science and technology is broad, spanning from information processing to catalysis.

“The primary focus of this work was to understand the preparation method as such,” explains the chemist. To produce nanostructures, he elaborates, there are two different approaches: larger particles are ground down to nanometer size, or the structures are built up from smaller components.

Sep 24, 2023

Visualizing how electrons flow around sharp bends

Posted by in category: nanotechnology

Electrons take flight at the nanoscale.

Sep 24, 2023

Nanofluidic device generates power with saltwater

Posted by in categories: energy, nanotechnology

There is a largely untapped energy source along the world’s coastlines: the difference in salinity between seawater and freshwater. A new nanodevice can harness this difference to generate power.

A team of researchers at the University of Illinois Urbana-Champaign has reported a design for a nanofluidic device capable of converting ionic flow into usable electric power in the journal Nano Energy. The team believes that their device could be used to extract power from the natural ionic flows at seawater-freshwater boundaries.

“While our design is still a concept at this stage, it is quite versatile and already shows strong potential for energy applications,” said Jean-Pierre Leburton, a U. of I. professor of electrical & computer engineering and the project lead. “It began with an academic question—’Can a nanoscale solid-state device extract energy from ionic flow?’—but our design exceeded our expectations and surprised us in many ways.”

Sep 23, 2023

Military Nanotechnology (1).pdf

Posted by in categories: military, nanotechnology

Shared with Dropbox.

Sep 23, 2023

Unlocking Battery Mysteries: X-Ray “Computer Vision” Reveals Unprecedented Physical and Chemical Details

Posted by in categories: biological, chemistry, computing, nanotechnology, physics

It lets researchers extract pixel-by-pixel information from nanoscale.

The nanoscale refers to a length scale that is extremely small, typically on the order of nanometers (nm), which is one billionth of a meter. At this scale, materials and systems exhibit unique properties and behaviors that are different from those observed at larger length scales. The prefix “nano-” is derived from the Greek word “nanos,” which means “dwarf” or “very small.” Nanoscale phenomena are relevant to many fields, including materials science, chemistry, biology, and physics.

Sep 21, 2023

Mesoporous Nano-Badminton with Asymmetric Mass Distribution: How Nanoscale Architecture Affects the Blood Flow Dynamics

Posted by in categories: biotech/medical, nanotechnology

While the nanobio interaction is crucial in determining nanoparticles’ in vivo fate, a previous work on investigating nanoparticles’ interaction with biological barriers is mainly carried out in a static state. Nanoparticles’ fluid dynamics that share non-negligible impacts on their frequency of encountering biological hosts, however, is seldom given attention. Herein, inspired by badmintons’ unique aerodynamics, badminton architecture Fe3O4&mPDA (Fe3O4 = magnetite nanoparticle and mPDA = mesoporous polydopamine) Janus nanoparticles have successfully been synthesized based on a steric-induced anisotropic assembly strategy. Due to the “head” Fe3O4 having much larger density than the mPDA “cone”, it shows an asymmetric mass distribution, analogous to real badminton.

Sep 21, 2023

Eric Drexler | MSEP: What, Why, and How?

Posted by in categories: biotech/medical, computing, nanotechnology

Foresight Molecular Machines Group.
Program & apply to join: https://foresight.org/molecular-machines/

This video was recorded at the 2022 Foresight Designing Molecular Machines Workshop. https://foresight.org/molecular-workshop/

Continue reading “Eric Drexler | MSEP: What, Why, and How?” »

Sep 20, 2023

First Light for a Next-Generation Light Source

Posted by in categories: biological, chemistry, nanotechnology, particle physics, quantum physics

X-ray free-electron lasers (XFELs) first came into existence two decades ago. They have since enabled pioneering experiments that “see” both the ultrafast and the ultrasmall. Existing devices typically generate short and intense x-ray pulses at a rate of around 100 x-ray pulses per second. But one of these facilities, the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in California, is set to eclipse this pulse rate. The LCLS Collaboration has now announced “first light” for its upgraded machine, LCLS-II. When it is fully up and running, LCLS-II is expected to fire one million pulses per second, making it the world’s most powerful x-ray laser.

The LCLS-II upgrade signifies a quantum leap in the machine’s potential for discovery, says Robert Schoenlein, the LCLS’s deputy director for science. Now, rather than “demonstration” experiments on simple, model systems, scientists will be able to explore complex, real-world systems, he adds. For example, experimenters could peer into biological systems at ambient temperatures and physiological conditions, study photochemical systems and catalysts under the conditions in which they operate, and monitor nanoscale fluctuations of the electronic and magnetic correlations thought to govern the behavior of quantum materials.

The XFEL was first proposed in 1992 to tackle the challenge of building an x-ray laser. Conventional laser schemes excite large numbers of atoms into states from which they emit light. But excited states with energies corresponding to x-ray wavelengths are too short-lived to build up a sizeable excited-state population. XFELs instead rely on electrons traveling at relativistic speed through a periodic magnetic array called an undulator. Moving in a bunch, the electrons wiggle through the undulator, emitting x-ray radiation that interacts multiple times with the bunch and becomes amplified. The result is a bright x-ray beam with laser coherence.

Page 65 of 306First6263646566676869Last