Menu

Blog

Archive for the ‘nanotechnology’ category: Page 48

Feb 16, 2024

Ultrafast, nanoscale control of electrical currents using light

Posted by in category: nanotechnology

Metasurfaces that use light to control currents at the nanoscale could enable ultrafast microelectronics and information science.

Feb 16, 2024

Chirality engineering for carbon nanotube electronics

Posted by in categories: engineering, nanotechnology

Chirality fundamentally determines the electrical properties of CNTs and is therefore critical for the performance of CNT electronics. This Review summarizes approaches in controlling the global chirality distribution and local chirality junctions and discusses the progress in CNT electronics.

Feb 16, 2024

New chip opens door to AI computing at light speed

Posted by in categories: mathematics, nanotechnology, robotics/AI

University of Pennsylvania engineers have developed a new chip that uses light waves, rather than electricity, to perform the complex math essential to training AI. The chip has the potential to radically accelerate the processing speed of computers while also reducing their energy consumption.

The silicon-photonic (SiPh) chip’s design is the first to bring together Benjamin Franklin Medal Laureate and H. Nedwill Ramsey Professor Nader Engheta’s pioneering research in manipulating materials at the nanoscale to perform mathematical computations using light—the fastest possible means of communication—with the SiPh platform, which uses silicon, the cheap, used to mass-produce computer chips.

The interaction of with matter represents one possible avenue for developing computers that supersede the limitations of today’s chips, which are essentially based on the same principles as chips from the earliest days of the computing revolution in the 1960s.

Feb 16, 2024

Nanomaterial with potential to tackle multiple global challenges could be developed without risk to human health

Posted by in categories: biotech/medical, health, nanotechnology

A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests. The study is published in the journal Nature Nanotechnology.

Carefully controlled inhalation of a specific type of graphene—the world’s thinnest, super strong and super —has no short-term adverse effects on lung or cardiovascular function, the study shows. The first controlled exposure clinical trial in people was carried out using thin, ultra-pure graphene oxide—a water-compatible form of the material.

Researchers say further work is needed to find out whether higher doses of this graphene oxide material or other forms of graphene would have a different effect. The team is also keen to establish whether longer exposure to the material, which is thousands of times thinner than a human hair, would carry additional health risks.

Feb 16, 2024

Nanobot uses a DNA clutch to engage its engine

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

A tiny robot with a clutch that mimics similar mechanisms found in microorganisms could be used to trigger the internal workings of a cell.

By Alex Wilkins

Feb 15, 2024

Nanomedicine paves the way for new treatments for spinal cord injury

Posted by in categories: biotech/medical, evolution, nanotechnology, neuroscience

In a study published in Advanced Materials, researchers have demonstrated that an innovative nano-vector (nanogel), which they developed, is able to deliver anti-inflammatory drugs in a targeted manner into glial cells actively involved in the evolution of spinal cord injury, a condition that leads to paraplegia or quadriplegia.

Treatments currently available to modulate the mediated by the component that controls the brain’s internal environment after acute spinal cord injury showed limited efficacy. This is also due to the lack of a therapeutic approach that can selectively act on microglial and astrocytic cells.

The nanovectors developed by Politecnico di Milano, called nanogels, consist of polymers that can bind to specific target molecules. In this case, the nanogels were designed to bind to , which are crucial in the inflammatory response following acute spinal cord injury. The collaboration between Istituto di Ricerche Farmacologiche Mario Negri IRCCS and Politecnico di Milano showed that nanogels, loaded with a drug with anti-inflammatory action (rolipram), were able to convert glial cells from a damaging to a protective state, actively contributing to the recovery of injured tissue.

Feb 15, 2024

‘μkiss’: A new method for precision delivery of nanoparticles and small molecules to individual cells

Posted by in categories: biological, nanotechnology

The delivery of experimental materials to individual cells with exactness and exclusivity has long been an elusive and much sought-after ability in biology. With it comes the promise of deciphering many longstanding secrets of the cell.

A research team at the Max-Planck-Zentrum für Physik und Medizin, Erlangen led by Professor Vahid Sandoghdar has now successfully shown how and single nanoparticles can be applied directly onto the surface of cells.

In the study, which was published in Nature Methods, the scientists describe their technique as a “μkiss” (microkiss)—an easy and cost-effective new method, unlocking new possibilities in single-cell science with a view to-wards next generation therapeutic applications.

Feb 15, 2024

Battery Breakthrough Could Allow Electric Cars To Go 1,000 km on Single Charge

Posted by in categories: nanotechnology, particle physics, robotics/AI, sustainability, transportation

Futuristic advancements in AI and healthcare stole the limelight at the tech extravaganza Consumer Electronics Show (CES) 2024. However, battery technology is the game-changer at the heart of these innovations, enabling greater power efficiency. Importantly, electric vehicles are where this technology is being applied most intensely. Today’s EVs can travel around 700km on a single charge, while researchers are aiming for a 1,000km battery range. Researchers are fervently exploring the use of silicon, known for its high storage capacity, as the anode material in lithium-ion batteries for EVs. However, despite its potential, bringing silicon into practical use remains a puzzle that researchers are still working hard to piece together.

Enter Professor Soojin Park, PhD candidate Minjun Je, and Dr. Hye Bin Son from the Department of Chemistry at Pohang University of Science and Technology (POSTECH). They have cracked the code, developing a pocket-friendly and rock-solid next-generation high-energy-density Li-ion battery system using micro silicon particles and gel polymer electrolytes. This work was published on the online pages of Advanced Science on the 17th of January.

Employing silicon as a battery material presents challenges: It expands by more than three times during charging and then contracts back to its original size while discharging, significantly impacting battery efficiency. Utilizing nano-sized silicon (10-9m) partially addresses the issue, but the sophisticated production process is complex and astronomically expensive, making it a challenging budget proposition. By contrast, micro-sized silicon (10-6m) is superbly practical in terms of cost and energy density. Yet, the expansion issue of the larger silicon particles becomes more pronounced during battery operation, posing limitations for its use as an anode material.

Feb 14, 2024

How molecular systems at the origin of life may have evolved: Rise of the nanomachines

Posted by in category: nanotechnology

Published in Angewandte Chemie, their findings promise to provide chemists and nanotechnologists with a simple strategy to create the next generation of dynamic nanosystems.

Life on Earth is sustained by millions of different tiny nanostructures or nanomachines that have evolved over millions of years, explained Alexis Vallée-Bélisle, a UdeM professor and principal investigator of the study.

Feb 14, 2024

Valentine’s Day 2024: Scientists create gel to mend broken hearts — How does it work?

Posted by in categories: biotech/medical, chemistry, engineering, nanotechnology

Scientists have created a wood pulp hydrogel to strengthen anti-cancer medications and restore damaged cardiac tissue.

Now that they have created a novel hydrogel that can be utilised to repair damaged heart tissue and enhance cancer therapies, you can cure a broken heart on Valentine’s Day, according to SciTech Daily.

Dr Elisabeth Prince, a researcher in chemical engineering at the University of Waterloo, collaborated with scientists from Duke University and the University of Toronto to design a synthetic material that is made of wood pulp-derived cellulose nanocrystals. The material’s unique biomechanical qualities are recreated by engineering it to mimic the fibrous nanostructures and characteristics of human tissues.

Page 48 of 313First4546474849505152Last