Menu

Blog

Archive for the ‘nanotechnology’ category: Page 127

Aug 19, 2022

Optical Vortex Sizes Up Nanoparticles

Posted by in categories: chemistry, nanotechnology, particle physics

https://youtube.com/watch?v=QfBG3AbW6QA

A novel method for measuring nanoparticle size could have applications in industry and basic materials science research.

Nanoparticles are present in everything from paints to pharmaceutical products. While nanoparticles have many important characteristics, such as molecular composition and shape, it is their size that determines many chemical and physical properties. A new technique relying on an optical vortex—a laser beam whose wave fronts twist around a dark central region—allows researchers to characterize nanoparticle size rapidly and continuously [1]. This light-based size probe might one day find applications in numerous industrial settings and aid fundamental materials science research.

Continue reading “Optical Vortex Sizes Up Nanoparticles” »

Aug 19, 2022

Scientists design new inks for 3D-printable wearable bioelectronics

Posted by in categories: 3D printing, biotech/medical, chemistry, nanotechnology, wearables

Flexible electronics have enabled the design of sensors, actuators, microfluidics and electronics on flexible, conformal and/or stretchable sublayers for wearable, implantable or ingestible applications. However, these devices have very different mechanical and biological properties when compared to human tissue and thus cannot be integrated with the human body.

A team of researchers at Texas A&M University has developed a new class of biomaterial inks that mimic native characteristics of highly conductive , much like skin, which are essential for the ink to be used in 3D printing.

This biomaterial ink leverages a new class of 2D nanomaterials known as molybdenum disulfide (MoS2). The thin-layered structure of MoS2 contains defect centers to make it chemically active and, combined with modified gelatin to obtain a flexible hydrogel, comparable to the structure of Jell-O.

Aug 18, 2022

Open-source software enables researchers to visualize nanoscale structures in real time

Posted by in categories: computing, nanotechnology, sustainability, transportation

Computer chip designers, materials scientists, biologists and other scientists now have an unprecedented level of access to the world of nanoscale materials thanks to 3D visualization software that connects directly to an electron microscope, enabling researchers to see and manipulate 3D visualizations of nanomaterials in real time.

Developed by a University of Michigan-led team of engineers and software developers, the capabilities are included in a new beta version of tomviz, an open-source 3D data visualization tool that’s already used by tens of thousands of researchers. The new version reinvents the visualization process, making it possible to go from microscope samples to 3D visualizations in minutes instead of days.

Continue reading “Open-source software enables researchers to visualize nanoscale structures in real time” »

Aug 16, 2022

Nanomaterials pave the way for the next computing generation

Posted by in categories: computing, nanotechnology

Technology on the nanometre scale could provide solutions to move on from the solid-state era.

Aug 16, 2022

Smart nanoparticle shows that intermittent fasting may protect the heart from damage during chemotherapy

Posted by in categories: biotech/medical, nanotechnology

Although chemotherapy can be a lifesaving treatment for patients with cancer, some of these medications can damage the heart. A team led by researchers at Massachusetts General Hospital (MGH) recently developed a nanoparticle probe that can detect an indicator of heart damage from chemotherapy.

Experiments with the probe also revealed that in mice with cancer, intermittent fasting before chemotherapy can prevent this damage indicator from arising, leading to preserved cardiac function and prolonged survival.

The study, which is published in Nature Biomedical Engineering, focused on autophagy—a process that cells use to remove unnecessary or dysfunctional components. A delicate balance exists between the protective and deleterious effects of this process: reduced levels of autophagy have been implicated in and other conditions; however, autophagy can also be a primary mechanism of cell death.

Aug 16, 2022

Inter-dimensional effects in nano-structures

Posted by in categories: nanotechnology, particle physics, quantum physics

Circa 2012 o.o!!!


We report on two extensions of the traditional analysis of low-dimensional structures in terms of low-dimensional quantum mechanics. On one hand, we discuss the impact of thermodynamics in one or two dimensions on the behavior of fermions in low-dimensional systems. On the other hand, we use both quantum wells and interfaces with different effective electron or hole mass to study the question when charge carriers in interfaces or layers exhibit two-dimensional or three-dimensional behavior.

Aug 16, 2022

Scientists improve the power output of triboelectric nanogenerators with carbon particles

Posted by in categories: nanotechnology, particle physics, sustainability

Most of us have felt the shock from static electricity by touching a metallic object after putting on a sweater or walking across a carpet. This occurs as a result of charge build-up whenever two dissimilar materials (such as our body and the fabric) come in contact with each other.

In 2012, scientists from the U.S. and China used this phenomenon, known as “,” to build a triboelectric nanogenerator (TENG) that converts unused mechanical energy into useful electrical energy. Their device consisted of two triboelectric polymer films with metallic electrodes, which, when brought together and separated, resulted in and the development of an electric voltage sufficient to power small electronic devices.

Viewed as potential sustainable energy harvesters, efforts have been made to enhance the power output of TENGs by injecting charges to the of triboelectric films. However, charge recombination in the electrode and charge repulsion on the surface of the material prevents them from achieving high surface charge densities.

Aug 15, 2022

Catch me if you can: How mRNA therapeutics are delivered into cells

Posted by in categories: biotech/medical, genetics, nanotechnology

In recent years, ribonucleic acid (RNA) has emerged as a powerful tool for the development of novel therapies. RNA is used to copy genetic information contained in our hereditary material, the deoxyribonucleic acid (DNA), and then serves as a template for building proteins, the building blocks of life. Delivery of RNA into cells remains a major challenge for the development of novel therapies across a broad range of diseases. Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden together with researchers from the global biopharmaceutical company AstraZeneca have investigated where and how mRNA is delivered inside the cell. They found that mRNA uses an unexpected entry door. Their results provide novel insights into the development of RNA therapeutics towards efficient delivery and lower dosages.

DNA () contains the required for the development and maintenance of life. This information is communicated by messenger (mRNA) to make proteins. mRNA-based therapeutics have the potential to address unmet needs for a wide variety of diseases, including cancer and cardiovascular disease. mRNA can be delivered to cells to trigger the production, degradation or modification of a target protein, something impossible with other approaches. A key challenge with this modality is being able to deliver the mRNA inside the cell so that it can be translated to make a protein. mRNA can be packed into lipid nanoparticles (LNPs)—small bubbles of fat—that protect the mRNA and shuttle it into cells. However, this process is not simple, because the mRNA has to pass the membrane before it can reach its site of action in the cell interior, the cytoplasm.

Researchers in the team of MPI-CBG director Marino Zerial are experts in visualizing the cellular entry routes of molecules in the cell, such as mRNA with high-resolution microscopes. They teamed up with scientists from AstraZeneca who provided the researchers with lipid nanoparticle prototypes that they had developed for therapeutic approaches to follow the mRNA inside the cell. The study is published in the Journal of Cell Biology.

Aug 15, 2022

Flu virus shells could improve delivery of mRNA into cells

Posted by in categories: biotech/medical, genetics, nanotechnology

Nanoengineers at the University of California San Diego have developed a new and potentially more effective way to deliver messenger RNA (mRNA) into cells. Their approach involves packing mRNA inside nanoparticles that mimic the flu virus—a naturally efficient vehicle for delivering genetic material such as RNA inside cells.

The new mRNA nanoparticles are described in a paper published recently in the journal Angewandte Chemie International Edition.

The work addresses a major challenge in the field of drug delivery: Getting large biological drug molecules safely into and protecting them from organelles called endosomes. These tiny acid-filled bubbles inside the cell serve as barriers that trap and digest large molecules that try to enter. In order for biological therapeutics to do their job once they are inside the cell, they need a way to escape the endosomes.

Aug 14, 2022

Improving crop resilience with nanoparticles

Posted by in categories: biotech/medical, genetics, nanotechnology

Materials that can carry CRISPR gene-editing into plant cells could be key in the fight against global hunger.