Menu

Blog

Archive for the ‘life extension’ category: Page 283

Nov 4, 2020

Senotherapeutic peptide reduces skin biological age and improves skin health markers

Posted by in categories: biotech/medical, life extension

Hi everybody. Today, it was published a paper in which it’s described the research that led to the identification and testing of a peptide that reduces the amount of senescent cells in the skin, and that peptide is being used in the first product in the whole world (as far as I know) that is already in the market and reduces the amount of senescent cells in humans (in this case, in the skin). The paper can be found in I don’t think it’s an ordinary thing that a product that reduces the amount of senescent cells is being sold in the market. After many years watching Aubrey de Grey’s talks, and reading news about promising researches about senescent cells, and about the formation of many companies to research how to reduce the amount of senescent cells, finally there is something that reached the public. This paper is very important as it allows that the rejuvenation field analyzes it and be prepared to seize this opportunity to show to the world, in practice, that the theoretical base of the rejuvenation therapies can be translated to practice and rejuvenate the human body — in this case, the skin. As some of you already know, the company which organized this research and launched the product is OneSkin, and its CEO, Carolina Reis, has been presenting their research in several conferences in the rejuvenation field in the last months. OneSkin is a company with its interests, of course, but at the same time is a representative of the rejuvenation field which is opening a path for all the other companies.


Skin aging has been primarily related to aesthetics and beauty. Therefore, interventions have focused on reestablishing skin appearance, but not necessarily skin health, function, and resilience. Recently, cellular senescence was shown to play a role in age-related skin function deterioration and influence organismal health and, potentially, longevity. In the present study, a two-step screening was performed to identify peptides capable of reducing cellular senescence in human dermal fibroblasts (HDF) from Hutchinson-Gilford Progeria (HGPS) patients. From the top four peptides of the first round of screening, we built a 764-peptide library using amino acid scanning, of which the second screen led to the identification of peptide 14. Peptide 14 effectively decreased HDF senescence induced by HGPS, chronological aging, ultraviolet-B radiation, and etoposide treatment, without inducing significant cell death, and likely by modulating longevity and senescence pathways. We further validated the effectiveness of peptide 14 using human skin equivalents and skin biopsies, where peptide 14 promoted skin health and reduced senescent cell markers, as well as the biological age of samples, according to the Skin-Specific DNA methylation clock, MolClock. Topical application of peptide 14 outperformed Retinol treatment, the current gold-standard in anti-aging skincare. Finally, we determined that peptide 14 is safe for long-term applications and also significantly extends both the lifespan and healthspan of C. elegans worms tested in two independent testings. This highlights the potential for geroprotective applications of the senotherapeutic compounds identified using our screening platform beyond the skin.

MB, AZ, CR, LB, EA, and JC are named as inventors of a patent directed at this invention, which is solely owned by OneSkin, Inc. MB, AZ, CR, EA, and JC are co-founders of OneSkin Inc. SAV and MR are co-founders of the startup company NemaLife Inc. that is commercializing microfluidic devices used in this study and licensed from Texas Tech University. SAV, MR, and TA are named inventors on a patent owned by Texas Tech University and receive royalty fees.

Nov 4, 2020

Science of Building Bones with Eggshells and Origami

Posted by in categories: bioengineering, biotech/medical, chemistry, life extension, science

Origami-inspired tissue engineering — using eggshells, plant leaves, marine sponges, and paper as substrates.


Ira Pastor ideaXme life sciences ambassador interviews Dr. Gulden Camci-Unal, Ph.D. Assistant Professor, at the Department Chemical Engineering, Francis College of Engineering, UMass Lowell.

Continue reading “Science of Building Bones with Eggshells and Origami” »

Nov 1, 2020

OneSkin Progress Report | Carolina Reis, CEO Oneskin

Posted by in categories: biotech/medical, life extension

In this interview to Allison Duettmann, Carolina Reis, OneSkin’s CEO, describes the results of the prove of concept clinical study that the company performed for the product launched in the market some weeks ago, and explains more thoroughly the possible mechanisms of action involved in the reduction of senescent cells in the skin.


Zoom Transcription: https://otter.ai/s/DxPPE-AMSl6VdZa4K8dkDQ

Oct 31, 2020

Scientists have reversed some signs of aging in a study on mice

Posted by in categories: biotech/medical, genetics, life extension

Mice who ate a diet high in fat and cholesterol were more likely to see their hair turn from black to white and experience hair loss. The diet also appeared to cause inflammation of the skin.

In the first stage of the study, the researchers genetically modified mice to develop atherosclerosis, a condition in which fat deposits form in the arteries.

They then fed mice either a Western diet high in fat and cholesterol or untreated rat chow from the age of 12 to 20 weeks. As expected, the mice who consumed the Western diet saw their hair turn white and fall out, and develop skin lesions. And the longer the mice ate the diet, the worse their symptoms became. By week 36, three quarters of the animals had skin lesions.

Oct 30, 2020

Slower Biological Aging In People On A Calorie Restricted Diet

Posted by in categories: biological, food, life extension

Here’s my latest video!


Calorie restriction (CR) is well known to extend average and maximal lifespan in a variety of animal models, but what about in people? In this video, I present evidence showing that CR slows biological aging, which suggests that CR will positively affect lifespan in people.

Oct 29, 2020

New ‘epigenetic’ clock provides insight into how the human brain ages

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

While our circadian body clock dictates our preferred rhythm of sleep or wakefulness, a relatively new concept—the epigenetic clock—could inform us about how swiftly we age, and how prone we are to diseases of old age.

People age at different rates, with some individuals developing both characteristics and diseases related to aging earlier in life than others. Understanding more about this so-called ‘biological age’ could help us learn more about how we can prevent diseases associated with age, such as . Epigenetic markers control the extent to which genes are switched on and off across the different cell-types and tissues that make up a . Unlike our , these epigenetic marks change over time, and these changes can be used to accurately predict biological age from a DNA .

Now, scientists at the University of Exeter have developed a new specifically for the . As a result of using human tissue samples, the new clock is far more accurate than previous versions, that were based on blood samples or other tissues. The researchers hope that their new clock, published in Brain and funded by Alzheimer’s Society, will provide insight into how accelerated aging in the brain might be associated with brain diseases such as Alzheimer’s and other forms of dementia.

Oct 29, 2020

Glutamine protects against muscle injuries and aging

Posted by in categories: biotech/medical, life extension

A team headed by Prof. Massimiliano Mazzone (VIB-KU Leuven Center for Cancer Biology), in collaboration with Dr. Emanuele Berardi and Dr. Min Shang, revealed a new metabolic dialogue between inflammatory cells and muscle stem cells. The researchers show that strengthening this metabolic crosstalk with an inhibitor of the enzyme GLUD1 fosters the release of glutamine, and improves muscle regeneration and physical performance in experimental models of muscle degeneration such as trauma, ischemia, and aging. Besides its translational potential, this work also provides key advances in several fields of research including muscle biology, immunometabolism, and stem cell biology.

The role of glutamine

Skeletal muscle is instrumental to move our body, but it is also a large reservoir of amino acids stored as proteins and it influences energy and protein metabolism throughout the human body. The role of the amino acid glutamine has been considered central for muscle metabolism because of its abundance. However, its precise role after trauma or during chronic muscle degenerative conditions were largely neglected.

Oct 28, 2020

Advanced Technology: Science Fiction to Science Fact and Encouraging a Culture of Responsibility

Posted by in categories: bioengineering, biotech/medical, life extension, security

Human body bio-factories of tommorow for organ and tissue replacement.


Ira Pastor, ideaXme life sciences ambassador interviews Dr Alexander Titus Chief Strategy Officer (CSO) at the Advanced Regenerative Manufacturing Institute (ARMI).

Continue reading “Advanced Technology: Science Fiction to Science Fact and Encouraging a Culture of Responsibility” »

Oct 26, 2020

Three Tissue Engineering Projects Awarded From Joint National Science Foundation and CASIS Solicitation to Leverage the Space Station

Posted by in categories: bioengineering, biotech/medical, business, genetics, life extension, science

KENNEDY SPACE CENTER (FL), October 19, 2020 – The Center for the Advancement of Science in Space (CASIS) and the National Science Foundation (NSF) announced three flight projects that were selected as part of a joint solicitation focused on leveraging the International Space Station (ISS) U.S. National Laboratory to further knowledge in the fields of tissue engineering and mechanobiology. Through this collaboration, CASIS, manager of the ISS National Lab, will facilitate hardware implementation, in-orbit access, and astronaut crew time on the orbiting laboratory. NSF invested $1.2 million in the selected projects, which are seeking to advance fundamental science and engineering knowledge for the benefit of life on Earth.

This is the third collaborative research opportunity between CASIS and NSF focused on tissue engineering. Fundamental science is a major line of business for the ISS National Lab, and by conducting research in the persistent microgravity environment offered by the orbiting laboratory, NSF and the ISS National Lab will drive new advances that will bring value to our nation and spur future inquiries in low Earth orbit.

Continue reading “Three Tissue Engineering Projects Awarded From Joint National Science Foundation and CASIS Solicitation to Leverage the Space Station” »

Oct 25, 2020

Online Longevity Day Conference 2020 Part 1 — Liz Parrish (CEO, BioViva)

Posted by in categories: futurism, life extension