Menu

Blog

Archive for the ‘life extension’ category: Page 280

Nov 23, 2020

The True (If Circuitous) Path to Stem Cell Cures

Posted by in categories: biotech/medical, life extension

Stem cells hold so much potential for regenerative medicine, it is understandable that so many people should be so impatient to see all that potential realized. But people, the desperately ill among them, need to recognize that stem cells aren’t talismans. In unregulated clinical settings, stem cells can be worthless or even harmful. That’s the bad news. The good news is that stem cells are giving up their profound but decidedly unmagical secrets.

What stem cells lose in mystery, they gain in practicality. They are to be seen as manageable biological units that can, given the right preparation, perform myriad therapeutic applications, less as miracle workers and more as drudges that accept reprogramming and subsequently perform their assigned tasks. They may also sacrifice some of their protean identity, turning into cells that are less stemmy but more effective (and safer) as therapeutic agents. Stemminess may even by bypassed completely, as when cells of one type are directly transdifferentiated into cells of another type.

Even as the preparation of stem cell therapeutics becomes more sophisticated, it is becoming more streamlined, more industrialized. Helping to advance both trends—greater refinement, greater manufacturability—is a new generation of biotech startups. Several of these startups are described in this article. By commercializing the latest stem cell technologies, these startups mean to add to the list of FDA-approved cell-based treatments.

Nov 22, 2020

Researchers improve neuronal reprogramming

Posted by in categories: biotech/medical, life extension, neuroscience

The replacement of lost neurons is a holy grail for neuroscience. A new promising approach is the conversion of glial cells into new neurons. Improving the efficiency of this conversion or reprogramming after brain injury is an important step towards developing reliable regenerative medicine therapies. Researchers at Helmholtz Zentrum München and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism. By expressing neuron-enriched mitochondrial proteins at an early stage of the direct reprogramming process, the researchers achieved a four times higher conversion rate and simultaneously increased the speed of reprogramming.

Neurons (nerve cells) have very important functions in the brain such as information processing. Many brain diseases, injuries and neurodegenerative processes, are characterized by the loss of neurons that are not replaced. Approaches in regenerative medicine therefore aim to reconstitute the neurons by transplantation, stem cell differentiation or direct conversion of endogenous non-neuronal cell types into functional neurons.

Researchers at Helmholtz Zentrum München and LMU are pioneering the field of direct conversion of glial cells into neurons which they have originally discovered. Glia are the most abundant cell type in the brain and can proliferate upon injury. Currently, researchers are able to convert glia cells into neurons — but during the process many cells die. This means that only few glial cells convert into functional nerve cells, making the process inefficient.

Nov 21, 2020

Israeli scientists say found a way to reverse the human aging process

Posted by in category: life extension

“We are going backwards in time,” Prof. Shai Efrati said.

Nov 21, 2020

An Interview with David Ettinger on the Cryonics Institute (Detroit)

Posted by in categories: cryonics, life extension, media & arts

https://www.youtube.com/watch?v=ICGirHAO6T4&feature=youtu.be

Nov 20, 2020

Can damage repair give us indefinite youth? | Dr Aubrey de Grey

Posted by in categories: biotech/medical, law, life extension

In the third episode of the Healthy Longevity webinar series, we hear from Dr Aubrey de Grey, Chief Science Officer of the SENS Research Foundation as he joins Prof Brian Kennedy for a science-backed and inspirational conversation on regenerative medicine and the implications of a population that lives longer and in good health.

Register for upcoming webinar episodes here: https://bit.ly/3jhe0SB.

Continue reading “Can damage repair give us indefinite youth? | Dr Aubrey de Grey” »

Nov 20, 2020

It Sure Looks Like Humans Have Found a Way to Reverse Aging

Posted by in categories: bioengineering, biotech/medical, life extension

A landmark study shows this age-old tech is the key.


The cure for aging has long been the Holy Grail of medicine. Emerging technologies, like the gene editing tool CRISPR, have opened the floodgates to what may be possible for the future of medical science. The key to slowing down aging, however, may lie in a simple and age-old technique.

Dive deeper. ➡ Read best-in-class health, tech, and science features, and get unlimited access to Pop Mech.

Continue reading “It Sure Looks Like Humans Have Found a Way to Reverse Aging” »

Nov 20, 2020

Getting it just right: The Goldilocks model of cancer

Posted by in categories: biotech/medical, chemistry, genetics, life extension

Senescence in cancer cells

~~~


Sometimes, too much of a good thing can turn out to be bad. This is certainly the case for the excessive cell growth found in cancer. But when cancers try to grow too fast, this excessive speed can cause a type of cellular aging that actually results in arrested growth. Scientists at Duke-NUS Medical School have now discovered that a well-known signaling pathway helps cancers grow by blocking the pro-growth signals from a second major cancer pathway.

Continue reading “Getting it just right: The Goldilocks model of cancer” »

Nov 20, 2020

Hybrid 3D-printing bioinks help repair damaged knee cartilage

Posted by in categories: 3D printing, bioprinting, biotech/medical, life extension

This may be good news for those who have damaged joints due to sports or old age.

😃


Human knees are notoriously vulnerable to injury or wearing out with age, often culminating in the need for surgery. Now researchers have created new hybrid bioinks that can be used to 3D print structures to replace damaged cartilage in the knee.

Continue reading “Hybrid 3D-printing bioinks help repair damaged knee cartilage” »

Nov 19, 2020

Near-infrared probe decodes telomere dynamics

Posted by in categories: biotech/medical, chemistry, life extension

A new synthetic probe offers a safe and straightforward approach for visualizing chromosome tips in living cells. The probe was designed by scientists at the Institute for Integrated Cell-Material Science (iCeMS) and colleagues at Kyoto University, and could advance research into aging and a wide range of diseases, including cancers. The details were published in the Journal of the American Chemical Society.

“Chromosome ends are constantly at risk of degradation and fusion, so they are protected by structures called telomeres, which are made of long repeating DNA sequences and bound proteins,” says iCeMS chemical biologist Hiroshi Sugiyama, who led the study. “If telomeres malfunction, they are unable to maintain chromosome stability, which can lead to diseases such as cancer. Also, telomeres normally shorten with each cell division until they reach their limit, causing cell death.”

Visualizing telomeres, especially their physical arrangements in , is important for understanding their relevance to disease and aging. Several visualization approaches already exist, but they have disadvantages. For example, some can only observe telomeres in preserved, or fixed, cells. Others are time-consuming or involve harsh treatments that denature DNA.

Nov 18, 2020

Hyperbaric Oxygen Therapy: First Human Study Shows Reversal in Biology of Aging

Posted by in categories: biotech/medical, life extension

TEL AVIV — November 18, 2020: In a scientifically verified approach, signalling an important breakthrough in the study of aging, Tel Aviv University and The Sagol Center for Hyperbaric Medicine and Research at Shamir Medical Center announced today that, for the first time in humans, two key biological hallmarks of aging, telomere length shortening, and accumulation of senescent cells, can be reversed. The prospective clinical trial, published in peer-reviewed Journal Aging, utilizes Hyperbaric Oxygen Therapy protocols to demonstrate cellular level improvement in healthy aging adults.


For the first-time a human study shows the reversal in the biology of aging including telomere shortening with Hyperbaric Oxygen Therapy.

Continue reading “Hyperbaric Oxygen Therapy: First Human Study Shows Reversal in Biology of Aging” »