Menu

Blog

Archive for the ‘genetics’ category: Page 469

Aug 11, 2016

Remote control of the brain is coming: how will we use it?

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

Controlling the minds of others from a distance has long been a favourite science fiction theme – but recent advances in genetics and neuroscience suggest that we might soon have that power for real. Just over a decade ago, the bioengineer Karl Deisseroth and his colleagues at Stanford University published their paper on the optical control of the brain – now known as optogenetics – in which the firing pattern of neurons is controlled by light. To create the system, they retrofitted neurons in mouse brains with genes for a biomolecule called channelrhodopsin, found in algae. Channelrhodopsin uses energy from light to open pathways so that charged ions can flow into cells. The charged ions can alter the electrical activity of neurons, influencing the animal’s behaviour along the way.

Soon researchers were using implants to guide light to channelrhodopsin in specific neurons in the brains of those mice, eliciting behaviour on demand. At the University of California the team of Anatol Kreitzer worked with Deisseroth to disrupt movement, mimicking Parkinson’s disease and even restoring normal movement in a Parkinsonian mouse. Deisseroth and his colleague Luis de Lecea later demonstrated that it was possible to wake up mice by activating a group of neurons in the brain that control arousal and sleep.

But optogenetics has been challenging. Since light does not easily penetrate dense fatty brain tissue, researchers must implant a fibre-optic cable to bring light into the brain. This limitation led to the development of another, less intrusive technique known as DREADD (designer receptors exclusively activated by designer drugs). In this case, a receptor normally activated by the neurotransmitter acetylcholine is modified to respond to a designer drug not normally found in the body. When the designer drug is delivered, neurons can be manipulated and behaviour changed over a number of hours. The major drawback here: the slow course of drug administration compared with the rapid changes in brain activity that occur during most tasks.

Continue reading “Remote control of the brain is coming: how will we use it?” »

Aug 11, 2016

Scientists Argue the US Ban on Human Gene Editing Will Leave It Behind

Posted by in categories: bioengineering, biotech/medical, genetics, law, sex

As the biotech revolution accelerates globally, the US could be getting left behind on key technological advances: namely, human genetic modification.

A Congressional ban on human germline modification has “drawn new lines in the sand” on gene editing legislation, argues a paper published today in Science by Harvard law and bioethics professor I. Glenn Cohen and leading biologist Eli Adashi of Brown University. They say that without a course correction, “the United States is ceding its leadership in this arena to other nations.”

Germline gene modification is the act of making heritable changes to early stage human embryos or sex cells that can be passed down to the next generation, and it will be banned in the US. This is different from somatic gene editing, which is editing cells of humans that have already been born.

Continue reading “Scientists Argue the US Ban on Human Gene Editing Will Leave It Behind” »

Aug 11, 2016

Why China is likely to spearhead the future of genetic enhancement

Posted by in categories: bioengineering, biotech/medical, ethics, genetics, neuroscience

G. Owen Schaefer, National University of Singapore

Would you want to alter your future children’s genes to make them smarter, stronger or better-looking? As the state of the science brings prospects like these closer to reality, an international debate has been raging over the ethics of enhancing human capacities with biotechnologies such as so-called smart pills, brain implants and gene editing. This discussion has only intensified in the past year with the advent of the CRISPR-cas9 gene editing tool, which raises the specter of tinkering with our DNA to improve traits like intelligence, athleticism and even moral reasoning.

Read more

Aug 11, 2016

The Chimera Quandary: Is It Ethical To Create Hybrid Embryos?

Posted by in categories: biotech/medical, cyborgs, genetics, health, policy

In Greek mythology, the Chimera is a monster that is part lion, part goat and part snake. Far from reality, sure, but the idea of mixing and matching creatures is real — and has ethicists concerned.

That’s because last week, the National Institutes of Health proposed a new policy to allow funding for scientists who are creating chimeras — the non-mythological kind. In genetics, chimeras are organisms formed when human stem cells are combined with tissues of other animals, with the potential for creating human-animal hybrids.

Pablo Ross of the University of California, Davis, inserts human stem cells into a pig embryo as part of experiments to create chimeric embryos.

Continue reading “The Chimera Quandary: Is It Ethical To Create Hybrid Embryos?” »

Aug 11, 2016

Scientists have found a set of genetic switches needed to regrow limbs

Posted by in categories: biological, genetics

Could humans regrow limbs? Genetic switches for regenerating tissue are traced back 420 million years…


But ultimately the researchers hope to see if the mechanism could be exploited to allow humans to regenerate limbs themselves, although they warn it could be several decades before that is possible.

Dr Yin said: ‘It depends on the pace of discovery, which is heavily dependent on funding.’

Continue reading “Scientists have found a set of genetic switches needed to regrow limbs” »

Aug 10, 2016

Why Humans Should Be Genetically Engineering Their Children Now

Posted by in categories: bioengineering, biotech/medical, genetics, government

Hmmm.


With the advent of CRISPR genetic engineering technology, humanity is on the cusp of an evolutionary revolution. We now possess the technology to modify our own genetic code (DNA). In a few more years, it will become more reliable, less expensive, and more available.

Continue reading “Why Humans Should Be Genetically Engineering Their Children Now” »

Aug 9, 2016

Can the Bioweapons Convention Survive Crispr?

Posted by in categories: biotech/medical, genetics, security

Crispr is a biotechnology that’s making genetic editing easier, cheaper, and far more accessible, but it has also been called a major security threat. Do such advances in biotechnology make the bioweapons convention obsolete?

Read more

Aug 9, 2016

Future of sport, technology, genetics and business

Posted by in categories: biotech/medical, business, genetics

Now, there is a question that must be asked when it comes to atheletes and CRISPR. As we have seen over the years with doping/ atheletic enhancing drugs, etc. how will we know for sure that an athelete from China, Russia, or even US was not enhanced as an embryo with CRISPR to be a superior athelete? Sure we can claim to set up a world wide database; however, in lile all things done before not everyone plays by the rules.


The future of sport, and how technology and genetics may change it, and the lesson for business.

Read more

Aug 8, 2016

China may be the future of genetic enhancement

Posted by in categories: bioengineering, biotech/medical, economics, genetics, neuroscience

Indeed, if we set ethical and safety objections aside, genetic enhancement has the potential to bring about significant national advantages. Even marginal increases in intelligence via gene editing could have significant effects on a nation’s economic growth. Certain genes could give some athletes an edge in intense international competitions. Other genes may have an effect on violent tendencies, suggesting genetic engineering could reduce crime rates.


We may soon be able to edit people’s DNA to cure diseases like cancer, but will this lead to designer babies? If so, bioethicist G Owen Schaefer argues that China will lead the way.

Read more

Aug 8, 2016

Will Warp Drive Finally Become A Reality?

Posted by in categories: genetics, quantum physics, space travel

Not so long ago we had to assume that we’ll never be able to travel faster than light. This was based on scientists’ sensible belief that we can travel through space but cannot change the nature of space itself. Then the idea of ‘Warp Drive’ came along to challenge and seemingly change all of the barriers that Einstein’s theory identified. Warp Drive is all about squashing and stretching space — a pretty ambitious task to begin with. So maybe it’s time again to have a look at how far we’ve already come or how close we are to seeing a real warp drive built by humans.

In May 1994, theoretical physicist Miguel Alcubierre finally presented his proposal of “The Warp Drive: Hyper-fast travel within general relativity” in a scientific journal called Classical and Quantum Gravity.

He indeed was inspired by Star Trek and its creator Gene Roddenberry, who famously coined the expression “Warp Drive” to explain the inexplicable propulsion of the Starship Enterprise as prodigious speed was just necessary to enable his fictional space travelers to leap from star to star on their trek.

Read more