Menu

Blog

Archive for the ‘genetics’ category: Page 25

Jun 18, 2024

Innovative Thinking Could Make New Sickle Cell Treatments More Accessible

Posted by in categories: biotech/medical, genetics

The cost of new gene-based sickle cell treatments isn’t the only barrier to access. Coming up with new ways to treat the whole disease—and person—could make treatment more equitable.

By Shobita Parthasarathy

Last fall, to great fanfare, US regulators approved two gene therapies for sickle cell disease, and the European Union and UK soon followed. Many people hope that these treatments will provide a “functional cure” for the genetic condition, which causes rigid, misshapen red blood cells that lead to anemia, episodes of extreme pain, blood vessel and organ damage, stroke risk and lower life expectancy. These sickle cell therapies also bring us closer to an age of “CRISPR medicine” in which new gene-editing tools could be used to fix a range of debilitating genetic diseases, including Duchenne muscular dystrophy and cancer.

Jun 18, 2024

AI Unearths Nearly a Million Potential Antibiotics to Take Out Superbugs

Posted by in categories: biotech/medical, genetics, robotics/AI

“There is an urgent need for new methods for antibiotic discovery,” Dr. Luis Pedro Coelho, a computational biologist and author of a new study on the topic, said in a press release.

Coelho and team tapped into AI to speed up the whole process. Analyzing huge databases of genetic material from the environment, they uncovered nearly one million potential antibiotics.

The team synthesized 100 of these AI-discovered antibiotics in the lab. When tested against bacteria known to resist current drugs, they found 63 readily fought off infections inside a test tube. One worked especially well in a mouse model of skin disease, destroying a bacterial infection and allowing the skin to heal.

Jun 18, 2024

Decoding Mental Health With Advanced Brain Gene Maps

Posted by in categories: biological, genetics, health, mapping, neuroscience

Groundbreaking maps reveal the complex gene regulation in brains with and without mental disorders, enhancing the understanding of mental illnesses and potential treatments.

A consortium of researchers has produced the largest and most advanced multidimensional maps of gene regulation networks in the brains of people with and without mental disorders. These maps detail the many regulatory elements that coordinate the brain’s biological pathways and cellular functions. The research, supported by the National Institutes of Health (NIH), used postmortem brain tissue from over 2,500 donors to map gene regulation networks across different stages of brain development and multiple brain-related disorders.

“These groundbreaking findings advance our understanding of where, how, and when genetic risk contributes to mental disorders such as schizophrenia, post-traumatic stress disorder, and depression,” said Joshua A. Gordon, M.D., Ph.D., director of NIH’s National Institute of Mental Health (NIMH). “Moreover, the critical resources, shared freely, will help researchers pinpoint genetic variants that are likely to play a causal role in mental illnesses and identify potential molecular targets for new therapeutics.”

Jun 16, 2024

Psychogenic Aging: A Novel Prospect to Integrate Psychobiological Hallmarks of Aging

Posted by in categories: biological, genetics, life extension

Harvanek ZM, Fogelman N, Xu K, Sinha R. Psychological and biological resilience modulates the effects of stress on epigenetic aging. Transl Psychiatry. 2021;11:1–9.

Article Google Scholar

Jun 16, 2024

Unlocking Immortality: T Cells as the New Fountain of Youth

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

Scientists have discovered that CAR T cells, traditionally used in cancer treatment, can be engineered to fight aging by eliminating senescent cells, offering a promising single-dose, lifelong treatment against aging-related diseases.

The fountain of youth has eluded explorers for ages. It turns out the magic anti-aging elixir might have been inside us all along.

Cold Spring Harbor Laboratory (CSHL) Assistant Professor Corina Amor Vegas and colleagues have discovered that T cells can be reprogrammed to fight aging, so to speak. Given the right set of genetic modifications, these white blood cells can attack another group of cells known as senescent cells. These cells are thought to be responsible for many of the diseases we grapple with later in life.

Jun 16, 2024

The Blood of Exceptionally Long-Lived People Reveals Crucial Differences

Posted by in categories: biotech/medical, genetics, life extension

Centenarians, once considered rare, have become commonplace. Indeed, they are the fastest-growing demographic group of the world’s population, with numbers roughly doubling every ten years since the 1970s.

How long humans can live, and what determines a long and healthy life, have been of interest for as long as we know. Plato and Aristotle discussed and wrote about the ageing process over 2,300 years ago.

The pursuit of understanding the secrets behind exceptional longevity isn’t easy, however. It involves unravelling the complex interplay of genetic predisposition and lifestyle factors and how they interact throughout a person’s life.

Jun 16, 2024

Is Coffee Associated With A Younger Biological Age?

Posted by in categories: biological, genetics, life extension

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhDDiscount Links: Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7x

Jun 15, 2024

CRISPR Gene Drives and the Future of Evolution

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

Immunizing enormous numbers of wild mice, however, is prohibitively difficult. By using genetic engineering, researchers could create white-footed mice that produced these antibodies from birth and could pass this ability on to their offspring. But did the island residents want to live with genetically engineered mice?

The answer was perhaps, but with caveats. In consulting with communities on this technology development, researchers found that community members preferred a cisgenic approach: They wanted white-footed mice that were engineered with DNA only from other white-footed mice.18 This would make the project more difficult for the researchers, and meant that a CRISPR-based gene drive, even one with limited spread, could not be used, since no white-footed mouse naturally has this gene-editing system. However, said Esvelt, “It’s their environment, so it’s their call.”

“We’re potentially causing an irreversible change to the environment,” said Telford. “We need to think about informed consent of the community as a proxy for informed consent of the environment. That’s been a real advance and something [that Esvelt] has pioneered—involving the communities from the very start.”

Jun 14, 2024

New DNA sequencing technique detects early genetic mutations

Posted by in categories: biotech/medical, genetics

HiDEF-seq advances cancer treatment:


HiDEF-seq technique could further help develop or advance new prevention approaches or develop treatments for genetic diseases and even cancer.

Continue reading “New DNA sequencing technique detects early genetic mutations” »

Jun 14, 2024

New study offers clues into genetics of X chromosome loss

Posted by in categories: biotech/medical, genetics, life extension

The DNA a woman is born with may influence how her cells respond to chromosomal abnormalities acquired with aging, according to a new genomic analysis co-led by NCI researchers.

Page 25 of 506First2223242526272829Last