Menu

Blog

Archive for the ‘engineering’ category: Page 163

May 19, 2019

Wireless Network Brings Dust-Sized Brain Implants a Step Closer

Posted by in categories: biotech/medical, engineering, internet, robotics/AI

Brain-computer interfaces have managed some amazing feats: allowing paralyzed people to type words and move a robot using only their minds, to name two examples. Brown University neuroengineering professor Arto Nurmikko has had a hand in some of those developments, but even he says the technology is at only a rudimentary stage—the equivalent of the computer understanding the brain’s intention to bend a single finger.

“We’re trying to go from the bending-of-the-finger paradigm to tying shoe laces and even to the concert pianist level. That requires lots more spatial and temporal resolution from an electronic brain interface,” Nurmikko says. His team is hoping that kind of resolution will come along with the transition from a single, hard wired neural implant to a thousand or more speck-size neural implants that wirelessly communicate with computers outside the brain. At the IEEE Custom Integrated Circuits Conference, engineers from Brown University, Qualcomm, and the University of California San Diego presented the final part of a communications scheme for these implants. It allows bidirectional communication between the implants and an external device with an uplink rate of 10 megabits per second and a downlink rate of 1 Mb/s.

“We believe that we are the first group to realize wireless power transfer and megabits per second communications” in a neural implant, says Wing Ching (Vincent) Leung, technical director at the Qualcomm Institute Circuits Lab at UC San Diego.

Continue reading “Wireless Network Brings Dust-Sized Brain Implants a Step Closer” »

May 17, 2019

Ultra-clean fabrication platform produces nearly ideal 2-D transistors

Posted by in categories: business, computing, engineering, particle physics

Semiconductors, which are the basic building blocks of transistors, microprocessors, lasers, and LEDs, have driven advances in computing, memory, communications, and lighting technologies since the mid-20th century. Recently discovered two-dimensional materials, which feature many superlative properties, have the potential to advance these technologies, but creating 2-D devices with both good electrical contacts and stable performance has proved challenging.

Researchers at Columbia Engineering report that they have demonstrated a nearly ideal transistor made from a two-dimensional (2-D) material stack—with only a two-atom-thick semiconducting layer—by developing a completely clean and damage-free process. Their method shows vastly improved performance compared to 2-D semiconductors fabricated with a conventional process, and could provide a scalable platform for creating ultra-clean devices in the future. The study was published today in Nature Electronics.

Continue reading “Ultra-clean fabrication platform produces nearly ideal 2-D transistors” »

May 17, 2019

Researchers develop electric field-based dressing to help heal wound infections

Posted by in categories: biotech/medical, engineering, life extension

Researchers at Indiana University School of Medicine have found a way to charge up the fight against bacterial infections using electricity.

Work conducted in the laboratories of the Indiana Center for Regenerative Medicine and Engineering, Chandan Sen, Ph.D. and Sashwati Roy, Ph.D. has led to the development of a dressing that uses an to disrupt biofilm . Their findings were recently published in the high-impact journal Annals of Surgery.

Bacterial biofilms are thin, slimy films of bacteria that form on some wounds, including burns or post-surgical infections, as well as after a , such as a catheter, is placed in the body. These bacteria generate their own electricity, using their own electric fields to communicate and form the biofilm, which makes them more hostile and difficult to treat. The Centers for Disease Control and Prevention estimates 65 percent of all infections are caused by bacteria with this biofilm phenotype, while the National Institutes of Health estimates that number is closer to 80 percent.

Continue reading “Researchers develop electric field-based dressing to help heal wound infections” »

May 17, 2019

Manipulating atoms one at a time with an electron beam

Posted by in categories: computing, engineering, particle physics, quantum physics

The ultimate degree of control for engineering would be the ability to create and manipulate materials at the most basic level, fabricating devices atom by atom with precise control.

Now, scientists at MIT, the University of Vienna, and several other institutions have taken a step in that direction, developing a method that can reposition atoms with a highly focused electron and control their exact location and bonding orientation. The finding could ultimately lead to new ways of making quantum computing devices or sensors, and usher in a new age of “atomic engineering,” they say.

The advance is described today in the journal Science Advances, in a paper by MIT professor of nuclear science and engineering Ju Li, graduate student Cong Su, Professor Toma Susi of the University of Vienna, and 13 others at MIT, the University of Vienna, Oak Ridge National Laboratory, and in China, Ecuador, and Denmark.

Continue reading “Manipulating atoms one at a time with an electron beam” »

May 17, 2019

Robert Zubrin Makes a Strong Case for Space Development

Posted by in categories: biotech/medical, economics, engineering, space

Greg Autry reviews Robert Zubrin’s new book, The Case for Space. The good doctor knows a lot more than just Mars. The book envisions a bright future for humanity in the solar system and beyond, backed by scientific, engineering and economic analysis from the expert who brought us the Case for Mars.

Read more

May 15, 2019

Journal of Chemical & Engineering Data (ACS Publications)

Posted by in category: engineering

Introducing JCED’s Latin America Special Issue. It comprises more than 30 articles from authors located in Argentina, Brazil, Chile, Colombia, Mexico, and Puerto Rico, and recognizes the vibrant and growing community of high quality thermodynamics researchers in the region. Read this Special Issue Today!

Read more

May 13, 2019

Human gut microbiome physiology can now be studied in vitro using Organ Chip technology

Posted by in categories: biotech/medical, computing, engineering, health

The human microbiome, the huge collection of microbes that live inside and on our body, profoundly affects human health and disease. The human gut flora in particular, which harbor the densest number of microbes, not only break down nutrients and release molecules important for our survival but are also key players in the development of many diseases including infections, inflammatory bowel diseases, cancer, metabolic diseases, autoimmune diseases, and neuropsychiatric disorders.

Most of what we know about human– interactions is based on correlational studies between disease state and bacterial DNA contained in stool samples using genomic or metagenomic analysis. This is because studying direct interactions between the microbiome and outside the human body represents a formidable challenge, in large part because even commensal bacteria tend to overgrow and kill within a day when grown on culture dishes. Many of the commensal microbes in the intestine are also anaerobic, and so they require very low oxygen conditions to grow which can injure human cells.

A research team at Harvard’s Wyss Institute for Biologically Inspired Engineering led by the Institute’s Founding Director Donald Ingber has developed a solution to this problem using ‘organ-on-a-chip’ (Organ Chip) microfluidic culture technology. His team is now able to culture a stable complex human microbiome in direct contact with a vascularized human intestinal epithelium for at least 5 days in a human Intestine Chip in which an oxygen gradient is established that provides high levels to the endothelium and epithelium while maintaining hypoxic conditions in the intestinal lumen inhabited by the commensal bacteria. Their “anaerobic Intestine Chip” stably maintained a microbial diversity similar to that in human feces over days and a protective physiological barrier that was formed by human intestinal tissue. The study is published in Nature Biomedical Engineering.

Continue reading “Human gut microbiome physiology can now be studied in vitro using Organ Chip technology” »

May 10, 2019

The Challenge of Building a Self-Driving Car

Posted by in categories: engineering, robotics/AI, transportation

Be one of the first 500 people to sign up with this link and get 20% off your subscription with Brilliant.org! https://brilliant.org/realengineering/

New vlog channel: https://www.youtube.com/channel/UCMet4qY3027v8KjpaDtDx-g

Continue reading “The Challenge of Building a Self-Driving Car” »

May 2, 2019

The Biggest Problems We’re Facing Today & The Future of Engineering: Crash Course Engineering #46

Posted by in categories: engineering, futurism

In our final episode of Crash Course Engineering we are going to take all the tools and ideas we’ve discussed throughout this series and try to imagine where we’re headed. We’re going to explore some of the biggest problems that today’s engineers are trying to solve and make some guesses about what the future of the field might look like.

Crash Course Engineering is produced in association with PBS Digital Studios: https://www.youtube.com/playlist?list=PL1mtdjDVOoOqJzeaJAV15Tq0tZ1vKj7ZV

Continue reading “The Biggest Problems We’re Facing Today & The Future of Engineering: Crash Course Engineering #46” »

May 1, 2019

Brain mapping: New technique reveals how information is processed

Posted by in categories: biotech/medical, engineering, neuroscience

Scientists have discovered a new method for quickly and efficiently mapping the vast network of connections among neurons in the brain.

Researchers combined infrared laser stimulation techniques with functional magnetic resonance imaging in animals to generate mapping of connections throughout the brain. The technique was described in a study published in the journal Science Advances.

“This is a revolution in detecting connections in the brain,” said senior author Anna Wang Roe, Ph.D., a professor in the Division of Neuroscience at OHSU’s Oregon National Primate Research Center. “The ability to easily map connections in the living brain with high precision opens doors for other applications in medicine and engineering.”

Read more