Menu

Blog

Archive for the ‘computing’ category: Page 53

Jul 21, 2024

Storm Ciarán’s effect on the boiling point of water in the southeast of the United Kingdom

Posted by in categories: biotech/medical, computing, information science

Optical spectrometers are versatile instruments that can produce light and measure its properties over specific portions of the electromagnetic spectrum. These instruments can have various possible applications; for instance, aiding the diagnosis of medical conditions, the analysis of biological systems, and the characterization of materials.

Conventional spectrometer designs often integrate advanced optical components and complex underlying mechanisms. As a result, they are often bulky and expensive, which significantly limits their use outside of specialized facilities, such as hospitals, laboratories and research institutes.

In recent years, some electronics engineers have thus been trying to develop more compact and affordable optical spectrometers that could be easier to deploy on a large-scale. These devices are typically either developed following the same principle underpinning the functioning of conventional larger spectrometers or via the use of arrayed broadband photodetectors, in conjunction with computational algorithms.

Jul 21, 2024

NVIDIA is set to fully transition to open-source GPU kernels with the R560 drivers

Posted by in categories: chemistry, computing, engineering, sustainability

A team of researchers, affiliated with UNIST has made a significant breakthrough in developing an eco-friendly dry electrode manufacturing process for lithium-ion batteries (LIBs). The new process, which does not require the use of harmful solvents, enhances battery performance while promoting sustainability.

The findings of this research have been published in the July 2024 issue of Chemical Engineering Journal.

Led by Professor Kyeong-Min Jeong in the School of Energy and Chemical Engineering at UNIST, the research team has introduced a novel solvent-free dry electrode process using polytetrafluoroethylene (PTFE) as a binder. This innovative approach addresses the challenges associated with traditional wet-electrode manufacturing methods, which often result in non-uniform distribution of binders and conductive materials, leading to performance degradation.

Jul 20, 2024

Infleqtion Installs First Quantum Computer at NQCC

Posted by in categories: computing, particle physics, quantum physics, security

Infleqtion, the world’s leading quantum information company, announced the installation of a cutting-edge neutral atom quantum computer at the National Quantum Computing Centre (NQCC).


PRESS RELEASE — Infleqtion, the world’s leading quantum information company, is proud to announce the installation of a cutting-edge neutral atom quantum computer at the National Quantum Computing Centre (NQCC). This marks a significant milestone as Infleqtion becomes the first company to deploy hardware at the NQCC under their quantum computing testbed programme. The news comes on the heels of Infleqtion’s rapid advancement in quantum gate fidelity.

Tim Ballance, President of Infleqtion UK, said, “Our recent installation is part of Infleqtion’s dedication to leading facility logistics in partnership with our colleagues at the NQCC. Together, we are establishing crucial infrastructure components such as network infrastructure, safety protocols, and security measures. Infleqtion has completed our second milestone, which includes the installation and in-situ characterisation of primary lasers, optical, vacuum, and electronic subsystems necessary for the quantum computer to function. This accomplishment demonstrates our advanced technology and expertise in the field.”

Continue reading “Infleqtion Installs First Quantum Computer at NQCC” »

Jul 20, 2024

How Silicon Ring Resonators Are Rewriting the Rules of Quantum Computing

Posted by in categories: computing, quantum physics

A breakthrough in integrated photonics has allowed researchers to harness light manipulation on silicon chips, paving the way for improved quantum computing and secure communications.

They developed compact silicon ring resonators to manage 34 qubit-gates and established a novel five-user quantum network.

Quantum Leap in Integrated Photonics.

Jul 19, 2024

The Physics and Metaphysics of Computation and Cognition

Posted by in categories: computing, neuroscience, physics

For at least half a century, it has been popular to compare brains and minds to computers and programs. Despite the continuing appeal of the computational model of the mind, however, it can be difficult to articulate precisely what the view commits one to. Indeed, critics such as John Searle and Hilary Putnam have argued that anything, even a rock, can be viewed as instantiating any computation we please, and this means that the claim that the mind is a computer is not merely false, but it is also deeply confused.

Jul 18, 2024

Spiral Multiverse Theory Challenges Big Bang, Proposes Network Of Interconnected Universes

Posted by in categories: computing, cosmology, singularity

The Spiral Multiverse Theory, proposed by computer engineer Tejas Shinde, challenges the conventional Big Bang theory by suggesting a continuous spiral pattern universe originating from a single point, or singularity. This theory posits that each universe begins with its own bang, forming a network of interconnected universes expanding in a spiral shape. The theory introduces the concept of interdimensional quasars as portals for multiverse travel and suggests each universe undergoes its own inflation without observable changes in the cosmic microwave background. This new perspective on cosmic evolution could open up new avenues for scientific exploration and understanding.

The Spiral Multiverse Theory, proposed by Tejas Shinde, a computer engineer, suggests a continuous spiral pattern universe originating from a single point, known as a singularity. This theory challenges the conventional Big Bang theory, which posits a singular explosive origin for the universe. Instead, the Spiral Multiverse Theory proposes that each universe begins with its own bang, forming a network of interconnected universes. This network, or multiverse, expands in a spiral shape, with the width and length of the arms expanding as the universe expands. The point where all universes connect is referred to as the Everyverse.

The Spiral Multiverse Theory offers a fresh perspective on cosmic evolution and presents a potential path for practical research. It introduces the concept of interdimensional quasars as portals for multiverse travel. The theory also suggests that each universe undergoes its own inflation without observable changes in the cosmic microwave background, a remnant radiation from the Big Bang.

Jul 18, 2024

Paving the way to extremely fast, compact computer memory

Posted by in categories: chemistry, computing, quantum physics

For decades, scientists have been studying a group of unusual materials called multiferroics that could be useful for a range of applications including computer memory, chemical sensors and quantum computers.

Jul 18, 2024

Efficiently improving the performance of noisy quantum computers

Posted by in categories: computing, mathematics, quantum physics

Samuele Ferracin1,2, Akel Hashim3,4, Jean-Loup Ville3, Ravi Naik3,4, Arnaud Carignan-Dugas1, Hammam Qassim1, Alexis Morvan3,4, David I. Santiago3,4, Irfan Siddiqi3,4,5, and Joel J. Wallman1,2

1Keysight Technologies Canada, Kanata, ON K2K 2W5, Canada 2 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada 3 Quantum Nanoelectronics Laboratory, Dept. of Physics, University of California at Berkeley, Berkeley, CA 94,720, USA 4 Applied Math and Computational Research Division, Lawrence Berkeley National Lab, Berkeley, CA 94,720, USA 5 Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94,720, USA

Continue reading “Efficiently improving the performance of noisy quantum computers” »

Jul 18, 2024

The Transhuman Hackers Who Are Getting Chips Implanted

Posted by in categories: computing, transhumanism

Transhuman hackers are a growing subculture that implants technology into their bodies, but now, some hackers are weaponising their implants.

Len Noe is an ethical transhuman hacker and joins us to explain.
#Transhuman #TranshumanHackers #Hackers

Jul 17, 2024

Evolution of Hot Jupiters: From Cold Giants to Star-Hugging Worlds

Posted by in categories: computing, space

“This new planet supports the theory that high eccentricity migration should account for some fraction of hot Jupiters,” said Dr. Sarah Millholland.


How do exoplanets evolve throughout their lifetimes, specifically those known as “hot Jupiters”, which have been found to orbit extremely close to their parent stars? This is what a recent study published in Nature hopes to address as an international team of researchers investigated the highly eccentric orbit of TIC 241,249,530 b, which is a Jupiter-sized exoplanet located approximately 1,100 light-years from Earth. This study holds the potential to help astronomers better understand the formation of exoplanets like hot Jupiters and how their orbits evolve over time.

Now, TIC 241,249,530 b could help astronomers piece together the evolution of hot Jupiters given the exoplanet’s highly eccentric orbit, meaning it travels very close to its parent star at certain points followed by swinging back out to well beyond the parent star, completing one orbit in 167 days. Astronomers hypothesize this could mean that hot Jupiters initially begin as cold Jupiters in highly eccentric orbits only to slowly become more circular and closer to its parent star over time.

Continue reading “Evolution of Hot Jupiters: From Cold Giants to Star-Hugging Worlds” »

Page 53 of 864First5051525354555657Last