Menu

Blog

Archive for the ‘computing’ category: Page 209

Jun 30, 2023

Engineers develop first-of-its-kind integrated optical isolator

Posted by in categories: computing, quantum physics

An optical isolator developed at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) could drastically improve optical systems for many practical applications.

All —used for telecommunications, microscopy, imaging, quantum photonics, and more—rely on a laser to generate photons and . To prevent those lasers from damage and instability, these systems also require isolators, components that prevent light from traveling in undesired directions. Isolators also help cut down on signal noise by preventing light from bouncing around unfettered. But conventional isolators have been relatively bulky in size and require more than one type of material to be joined together, creating a roadblock to achieving enhanced performance.

Now, a team of researchers led by electrical engineer Marko Lončar at SEAS has developed a method for building a highly-efficient integrated isolator that’s seamlessly incorporated into an made of lithium niobate. Their findings are reported in Nature Photonics.

Jun 30, 2023

New Type of Hyper-Efficient Synapse-like Computer Memory Design

Posted by in categories: computing, internet

A new design for computer memory that could both greatly improve performance and reduce the energy demands of internet and communications technologies, which are predicted to consume nearly a third of global electricity within the next ten years.

“A typical USB stick based on continuous range would be able to hold between ten and 100 times more information, for example,” said Hellenbrand.

Jun 29, 2023

Scientists edge toward scalable quantum simulations on a photonic chip

Posted by in categories: computing, quantum physics, space

Scientists have made an important step toward developing computers advanced enough to simulate complex natural phenomena at the quantum level. While these types of simulations are too cumbersome or outright impossible for classical computers to handle, photonics-based quantum computing systems could provide a solution.

A team of researchers from the University of Rochester’s Hajim School of Engineering & Applied Sciences developed a new chip-scale optical quantum system that could help make such a system feasible. The team, led by Qiang Lin, a professor of electrical and engineering and optics, published their findings in Nature Photonics.

Lin’s team ran the simulations in a synthetic space that mimics the physical world by controlling the frequency, or color, of quantum entangled photons as time elapses. This approach differs from the traditional photonics-based computing methods in which the paths of photons are controlled, and also drastically reduces the physical footprint and resource requirements.

Jun 29, 2023

Artificially cultured brains improve processing of time series data, shows study

Posted by in categories: chemistry, computing

The brain comprises billions of interconnected neurons that transmit and process information and allow it to act as a highly sophisticated information processing system. To make it as efficient as possible, the brain develops multiple modules tasked with different functions, like perception and body control. Within a single area, neurons form multiple clusters and function as modules—an important trait that has remained essentially unchanged throughout evolution.

Still, many unanswered questions remain regarding how the specific structure of the brain’s network, such as the modular structure, works together with the physical and chemical properties of neurons to process information.

Reservoir computing is a inspired by the brain’s powers, where the comprises a large number of interconnected nodes that transform input signals into a more complex representation.

Jun 29, 2023

Quantum computing could get boost from discovery of Q-silicon

Posted by in categories: computing, quantum physics

Researchers at North Carolina State University have discovered a new distinct form of silicon called Q-silicon which, among other interesting properties, is ferromagnetic at room temperature. The findings could lead to advances in quantum computing, including the creation of a spin qubit quantum computer that is based on controlling the spin of an electron.

“The discovery of Q-silicon having robust ferromagnetism will open a new frontier in atomic-scale, spin-based devices and functional integration with nanoelectronics,” said Jay Narayan, the John C. Fan Family Distinguished Chair in Materials Science and corresponding author of a paper describing the work published in Materials Research Letters.

Ferromagnetism in materials outside of and has excited scientists worldwide for a long time. This is because spin-polarized electrons can be used to process and store information with atomic resolution. However, materials with even numbers of electrons, such as carbon and silicon, without unpaired spins were not considered seriously in terms of bulk ferromagnetism. The dangling bonds in bulk carbon and silicon materials usually reconstruct and eliminate sources of unpaired electrons.

Jun 29, 2023

Biocompatible Innovation: MIT’s Soft, Printable, Metal-Free Electrodes for Next-Gen Implants

Posted by in categories: biotech/medical, computing, neuroscience

A new Jell-O-like material could replace metals as electrical interfaces for pacemakers, cochlear implants, and other electronic implants.

Do an image search for “electronic implants,” and you’ll draw up a wide assortment of devices, from traditional pacemakers and cochlear implants to more futuristic brain and retinal microchips aimed at augmenting vision, treating depression, and restoring mobility.

Some implants are hard and bulky, while others are flexible and thin. But no matter their form and function, nearly all implants incorporate electrodes — small conductive elements that attach directly to target tissues to electrically stimulate muscles and nerves.

Jun 29, 2023

A Major Quantum Computing Leap With a Magnetic Twist — “A New Paradigm”

Posted by in categories: computing, education, quantum physics

A University of Washington.

Founded in 1,861, the University of Washington (UW, simply Washington, or informally U-Dub) is a public research university in Seattle, Washington, with additional campuses in Tacoma and Bothell. Classified as an R1 Doctoral Research University classification under the Carnegie Classification of Institutions of Higher Education, UW is a member of the Association of American Universities.

Jun 28, 2023

A brain scientist and a philosopher have resolved a 25-year-old wager on consciousness

Posted by in categories: computing, space

A case of wine was put on the line.

This is according to a report by Science Alert published on Tuesday.


A 25-year-old wager on the source of consciousness between German-American computational neuroscientist Christof Koch and Australian philosopher and cognitive scientist David Chalmers has come to a close with the first one admitting defeat.

Continue reading “A brain scientist and a philosopher have resolved a 25-year-old wager on consciousness” »

Jun 28, 2023

Clever Aussie brain-computer interface leaves your skull intact

Posted by in categories: biotech/medical, computing, Elon Musk, neuroscience

Australian startup Synchron, backed by Bill Gates and Jeff Bezos, looks set to beat Elon Musk’s Neuralink to market with a safe, reliable brain-computer interface that any hospital can quickly install – without cutting a hole in your skull.

Jun 27, 2023

A VDAC1-mediated NEET protein chain transfers [2Fe-2S] clusters between the mitochondria and the cytosol and impacts mitochondrial dynamics

Posted by in categories: biotech/medical, computing

Here we address the important question of cross-talk between the mitochondria and cytosol. We show that the inner mitochondrial protein, MiNT, interacts with a protein on the outer mitochondrial membrane (mNT). This interaction occurs within the major outer membrane protein VDAC1. Inside the inner space of VDAC1, MiNT transfers its [2Fe-2S] clusters to mNT, which was shown to be a [2Fe-2S] cluster donor protein that donates its cluster(s) to apo-acceptor proteins residing in the cytosol. Hence, we suggest a pathway for transferring [2Fe-2S] clusters from inside the mitochondria to the cytosol.


Mitochondrial inner NEET (MiNT) and the outer mitochondrial membrane (OMM) mitoNEET (mNT) proteins belong to the NEET protein family. This family plays a key role in mitochondrial labile iron and reactive oxygen species (ROS) homeostasis. NEET proteins contain labile [2Fe-2S] clusters which can be transferred to apo-acceptor proteins. In eukaryotes, the biogenesis of [2Fe-2S] clusters occurs within the mitochondria by the iron–sulfur cluster (ISC) system; the clusters are then transferred to [2Fe-2S] proteins within the mitochondria or exported to cytosolic proteins and the cytosolic iron–sulfur cluster assembly (CIA) system. The last step of export of the [2Fe-2S] is not yet fully characterized. Here we show that MiNT interacts with voltage-dependent anion channel 1 (VDAC1), a major OMM protein that connects the intermembrane space with the cytosol and participates in regulating the levels of different ions including mitochondrial labile iron (mLI). We further show that VDAC1 is mediating the interaction between MiNT and mNT, in which MiNT transfers its [2Fe-2S] clusters from inside the mitochondria to mNT that is facing the cytosol. This MiNT–VDAC1–mNT interaction is shown both experimentally and by computational calculations. Additionally, we show that modifying MiNT expression in breast cancer cells affects the dynamics of mitochondrial structure and morphology, mitochondrial function, and breast cancer tumor growth. Our findings reveal a pathway for the transfer of [2Fe-2S] clusters, which are assembled inside the mitochondria, to the cytosol.