Menu

Blog

Archive for the ‘computing’ category: Page 206

Jul 12, 2023

Sound is manipulated for quantum information processing

Posted by in categories: computing, particle physics, quantum physics

“A phonon represents the collective motion of an astronomical number of atoms,” Cleland says. “And they all have to work together in order to obey quantum mechanics. There was this question in the back of my mind, will this really work? We tried it, and it’s kind of amazing, but it really does work.”

Splitting a phonon

The team created single phonons as propagating wavepackets on the surface of a lithium niobate chip. The phonons were created and detected using two superconducting qubits, which were located on a separate chip, and coupled to the lithium niobate chip through the air. The two superconducting qubits were located either of the chip, with a two-millimetre-long channel between them hosting the travelling phonons.

Jul 12, 2023

Record-breaking number of qubits entangled in a quantum computer

Posted by in categories: computing, quantum physics

A group of 51 superconducting qubits have been entangled inside a quantum computer, not just in pairs but in a complex system that entangles each qubit to every other one.

By Karmela Padavic-Callaghan

Jul 11, 2023

Five Dimensional Glass Discs Can Store Data for Upto 13.8 Billion Years

Posted by in category: computing

It’s estimated that humans are producing the equivalent of 10 million Blu-ray Discs of data per day – and all and zero of those have to be stored somewhere.

Now, UK researchers may have a solution: a five-dimensional (5D) digital data disc that can store 360 terabytes of data for about 13.8 billion years.

To create the data discs, scientists at the University of Southampton used a process called femtosecond laser writing, which creates tiny discs of glass using ultrafast lasers that generate short and intense pulses of light.

Jul 11, 2023

Large collaboration yields unprecedented ‘live’ view into the brain’s complexity

Posted by in categories: computing, neuroscience

Brain tissue is one of the most intricate tissue specimens that scientists have arguably ever dealt with. Packed with an immeasurable amount of information, the human brain is the most sophisticated computational device with its network of around 86 billion neurons.

Understanding such complexity is a difficult task, and therefore making progress requires technologies to unravel the tiny, taking place in the brain at microscopic scales. Imaging is therefore an enabling tool in neuroscience.

Continue reading “Large collaboration yields unprecedented ‘live’ view into the brain’s complexity” »

Jul 11, 2023

Time Reversal Photonics Experiment Resolves Quantum Paradox

Posted by in categories: computing, particle physics, quantum physics

It seems quantum mechanics and thermodynamics cannot be true simultaneously. In a new publication, University of Twente researchers use photons in an optical chip to demonstrate how both theories can be true at the same time.

In quantum mechanics, time can be reversed and information is always preserved. That is, one can always find back the previous state of particles. It was long unknown how this could be true at the same time as thermodynamics. There, time has a direction and information can also be lost. “Just think of two photographs that you put in the sun for too long, after a while you can no longer distinguish them,” explains author Jelmer Renema.

There was already a theoretical solution to this quantum puzzle and even an experiment with atoms, but now the University of Twente (UT) researchers have also demonstrated it with photons. “Photons have the advantage that it is quite easy to reverse time with them,” explains Renema. In the experiment, the researchers used an optical chip with channels through which the photons could pass. At first, they could determine exactly how many photons there were in each channel, but after that, the photons shuffled positions.

Jul 11, 2023

New ‘light-structure’ technique could solve some of quantum computing’s biggest challenges

Posted by in categories: computing, internet, quantum physics

“I find it totally amazing that it is possible at all to build these light structures.”

A Ph.D. candidate at has developed an innovative technique for creating the elementary building blocks of a future quantum computer or internet in a more controlled manner, opening up a potential solution to many of the challenges along the road to this long-sought technology.

Petr Steindl’s doctoral thesis, which he defended last week as the final step in his Ph.D. program at Leiden University in Germany, explores a new technique for generating photons using quantum dots and microcavities.

Jul 10, 2023

Mark “Superhero Copycat” Zuckerberg

Posted by in categories: automation, big data, business, computing, disruptive technology, Elon Musk, evolution, futurism, innovation, internet, machine learning, Mark Zuckerberg, robotics/AI

A better world without Facebook and all its negative impacts would be a significant step forward. Facebook’s dominance and influence have often been associated with issues such as privacy breaches, the spread of misinformation, and the erosion of real social connections. By breaking free from Facebook’s grip, we can foster a healthier online environment that prioritizes privacy, genuine interactions, and reliable information. It is time to envision a world where social media platforms serve as catalysts for positive change, promoting authentic communication and meaningful connections among individuals.

(Image credit: Adobe Stock)

Mark Zuckerberg, the co-founder of Facebook (now Meta), recently celebrated reaching 100 million users in just five days with his new Twitter-like platform called Threads. However, this achievement doesn’t impress me much. Instead, it highlights Zuckerberg’s tendency to imitate rather than innovate.

While I used to admire him, I now realize that he doesn’t belong in the same league as my true idols. Comparing the 100 million sign-ups for ChatGPT to the 100 million Threads users is simply absurd.

Continue reading “Mark "Superhero Copycat" Zuckerberg” »

Jul 10, 2023

Quantum Error Correction: Shattering the Breakeven Barrier

Posted by in categories: computing, quantum physics

Researchers have achieved a major milestone in quantum computing by extending the lifetime of quantum information beyond the breakeven point using Quantum Error Correction, opening the path for effective quantum information processing amidst real-world noise. Understanding Decoherence and Quantum E.

Jul 10, 2023

Electric Fields are Pivotal in Encoding Memories

Posted by in categories: computing, neuroscience

Summary: Our brains have been likened to an orchestra, with neurons as musicians creating a symphony of thought and memory.

A recent study reveals the conductor behind this symphony: electric fields. These fields are generated by the combined electrical activity of neurons, orchestrating them into functional networks.

This research shines a light on the brain’s complex inner workings and could impact the future of brain-computer interfaces.

Jul 10, 2023

The Materials of Future Transistors

Posted by in categories: computing, engineering

Researchers in the Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering have demonstrated control over an emerging material, which they consider as a possible future alternative to silicon in microelectronics. This is a timely development, because scientists and engineers face challenges in continuing the transistor shrinking trend, an important driver of computer chip performance.

The continuous performance improvement of these chips has been driven by shrinking the size of the most basic logic “Lego” piece – the transistor. Transistors are miniature switches that control the flow of electric currents, analogous to a faucet controlling the flow of water. Already in the early 1960s, Gordon Moore, the founder of Intel, proposed that the transistors’ miniaturization rate should allow doubling of the number of transistors per area every 2 years.