Organic-based optoelectronic technology is increasingly recognized as an energy-efficient solution for low-power indoor electronics and wireless IoT sensors. This is largely due to its superior flexibility and light weight compared to conventional silicon-based devices. Notably, organic photovoltaic cells (OPVs) and organic photodetectors (OPDs) are leading examples in this field.
OPVs have the remarkable ability to absorb energy and generate electricity even under very low light conditions, while OPDs are capable of capturing images. However, despite their potential, the development of these devices has thus far been conducted independently. As a result, they have not yet reached the level of efficiency necessary to be considered practical for next-generation, miniaturized devices.
A Korea Institute of Science and Technology (KIST) research team, led by Dr. Min-Chul Park and Dr. Do Kyung Hwang of the Center for Opto-Electronic Materials and Devices, Prof. Jae Won Shim and Prof. Tae Geun Kim of the School of Electrical Engineering at Korea University, Prof. JaeHong Park of the Department of Chemistry and Nanoscience at Ewha Womans University, have now developed an organic-based optoelectronic device.
Comments are closed.