A Game Changer in Quantum Computing:
The ingredients for superfast computers could be nearly in place. For the first time, researchers have demonstrated that two silicon transistors acting as quantum bits can perform a tiny calculation.
The advance represents the final physical component needed to realise the promise of super-powerful silicon quantum computers, which harness the science of the very small — the strange behaviour of subatomic particles — to solve computing challenges that are beyond the reach of even today’s fastest supercomputers. Potentially transforming fields like encryption and the search for new pharmaceuticals.
The significant advance, by a team at the University of New South Wales (UNSW) in Sydney appears today in the international journal Nature (“A two-qubit logic gate in silicon”).
“What we have is a game changer,” said team leader Andrew Dzurak, Scientia Professor and Director of the Australian National Fabrication Facility at UNSW.
“We’ve demonstrated a two-qubit logic gate — the central building block of a quantum computer — and, significantly, done it in silicon. Because we use essentially the same device technology as existing computer chips, we believe it will be much easier to manufacture a full-scale processor chip than for any of the leading designs, which rely on more exotic technologies.
“This makes the building of a quantum computer much more feasible, since it is based on the same manufacturing technology as today’s computer industry,” he added.
Comments are closed.