Menu

Blog

Archive for the ‘transportation’ category: Page 105

Aug 24, 2023

Efficient single-winged aerial robots with reduced energy consumption

Posted by in categories: robotics/AI, transportation

Flying robotic systems have already proved to be highly promising for tackling numerous real-world problems, including explorations of remote environments, the delivery of packages in inaccessible sites, and searches for survivors of natural disasters. In recent years, roboticists and computer scientists have introduced a multitude of aerial vehicle designs, each with distinct advantages and features.

Researchers at Sharif University of Technology in Iran recently carried out a study exploring the potential of flying with a single wing, known as mono-wing aerial vehicles. Their paper, published in the Journal of Intelligent & Robotic Systems, outlines a new approach that could help to better control the flight of these vehicles as they navigate their surrounding environment.

“Unconventional vehicles inspired by natural phenomena consistently captivate the attention of engineers,” Afshin Banazadeh, one of the researchers who carried out the study, told Tech Xplore. “One such , the mono-wing, a single-bladed aerial vehicle, is no exception.

Aug 24, 2023

Research team enhances hydrogen evolution catalyst through stepwise deposition

Posted by in categories: economics, energy, transportation

In order to enhance the accessibility of hydrogen-powered vehicles and establish hydrogen as a viable energy source, it’s imperative to reduce the cost of hydrogen production, thereby achieving economic feasibility. To achieve this goal, maximizing the efficiency of electrolysis-hydrogen evolution, the process responsible for producing hydrogen from water, is crucial.

Recently, a team of researchers comprising Professor In Su Lee, Research Professor Soumen Dutta, and Byeong Su Gu from the Department of Chemistry at Pohang University of Science and Technology (POSTECH) achieved a significant improvement in production efficiency of hydrogen, a green energy source, through the development of a platinum nanocatalyst. They accomplished this feat by depositing two different metals in a stepwise manner.

The findings of their research were published in Angewandte Chemie.

Aug 24, 2023

Machine learning is revolutionising our understanding of particle “jets”

Posted by in categories: information science, particle physics, robotics/AI, transportation

What happens when – instead of recording a single particle track or energy deposit in your detector – you see a complex collection of many particles, with many tracks, that leaves a large amount of energy in your calorimeters? Then congratulations: you’ve recorded a “jet”! Jets are the complicated experimental signatures left behind by showers of strongly-interacting quarks and gluons. By studying the internal energy flow of a jet – also known as the “jet substructure” – physicists can learn about the kind of particle that created it. For instance, several hypothesised new particles could decay into heavy Standard Model particles at extremely high (or “boosted”) energies. These particles could then decay into multiple quarks, leaving behind “boosted”, multi-pronged jets in the ATLAS experiment. Physicists use “taggers” to distinguish these jets from background jets created by single quarks and gluons. The type of quarks produced in the jet can also give extra information about the original particle. For example, Higgs bosons and top quarks often decay to b-quarks – seen in ATLAS as “b-jets” – which can be distinguished from other kinds of jets using the long lifetime of the B-hadron. The complexity of jets naturally lends itself to Artificial Intelligence (AI) algorithms, which are able to efficiently distil large amounts of information into accurate decisions. AI algorithms have been a regular part of ATLAS data analysis for several years, with ATLAS physicists continuously pushing these tools to new limits. This week, ATLAS physicists presented four exciting new results about jet tagging using AI algorithms at the BOOST 2023 conference held at Lawrence Berkeley National Lab (USA). Figure 1: The graphs showing the full declustering shower development and the primary Lund jet plane in red are shown in (left) for a jet originating from a W-boson and in (right) for a jet originating from a light-quark. (Image: ATLAS Collaboration/CERN) Artificial intelligence is revolutionising how ATLAS researchers identify – or ‘tag’ – what types of particles create jets in the experiment. Two results showcased new ATLAS taggers used for identifying jets coming from a boosted W-boson decay as opposed to background jets originating from light quarks and gluons. Typically, AI algorithms are trained on “high-level” jet substructure information recorded by the ATLAS inner detector and calorimeters – such as the jet mass, energy correlation ratios and jet splitting scales. These new studies instead use “low-level” information from these same detectors – such as the direct kinematic properties of a jet’s constituents or the novel two-dimensional parameterisation of radiation within a jet (known as the “Lund Jet plane”), built from the jet’s constituents and using graphs based on the particle-shower development (see Figure 1). These new taggers made it possible to separate the shape of signal and background far more effectively than any high-level taggers could do alone (see Figure 2). In particular, the Lund Jet plane-based tagger outperforms the other methods, by using the same input to the AI networks but in a different format inspired by the physics of the jet shower development. A similar evolution was followed for the development of a new boosted Higgs tagger, which identifies jets originating from boosted Higgs bosons decaying hadronically to two b-quarks or c-quarks. It also uses low-level information – in this case, tracks reconstructed from the inner detector associated with the single jet containing the Higgs boson decays. This new tagger is the most performant tagger to date, and represents a factor of 1.6 to 2.5 improvement, at a 50% boosted Higgs signal efficiency, over the previous version of the tagger, which used high-level information from the jet and b/c-quark decays as input for a neural network (see Figure 3). Figure 2: Signal efficiency as a function of the background rejection for the different W-boson taggers: one is based on the Lund jet plane, while the others use unordered sets of particles or graphs with additional structure. (Image: ATLAS Collaboration/CERN) Figure 3: Top and multijet rejections as a function of the H→bb signal efficiency. Performance of the new boosted Higgs tagger is compared to the previous taggers using high-level information from the jet b-quark decays. (Image: ATLAS Collaboration/CERN) Finally, ATLAS researchers presented two new taggers that aim to differentiate between jets originating from quarks and those originating from gluons. One tagger looked at the charged-particle constituent multiplicity of the jets being tagged, while the other combined several jet kinematic and jet substructure variables using a Boosted Decision Tree. Physicists compared the performance of these quark/gluon taggers; Figure 4 shows the rejection of gluon jets as a function of quark selection efficiency in simulation. Several studies of Standard-Model processes – including vector boson fusion – and new physics searches with quark-rich signals could greatly benefit from these taggers. However, in order for them to be used in analyses, additional corrections on the signal efficiency and background rejection need to be applied to bring the performance of the taggers in data and simulation to be the same. Researchers measured both the efficiency and rejection rates in Run-2 data for these taggers, and found good agreement between the measured data and predictions; therefore, only small corrections are needed. The excellent performance of these new jet taggers does not come without questions. Crucially, how can researchers interpret what the machine-learning models learned? And why do more complex architectures show a stronger dependence on the modelling of simulated physics processes used for the training, as shown in the two W-tagging studies? Challenges aside, these taggers set an outstanding baseline for analysing LHC Run-3 data. Given the current strides being made in machine learning, its continued application to particle physics will hopefully increase the understanding of jets and revolutionise the ATLAS physics programme in the years to come. Figure 4: Signal efficiency as a function of the background rejection for different quark taggers. The use of machine learning (BDT) results in an improved performance. (Image: ATLAS Collaboration/CERN) Learn more Tagging boosted W bosons with the Lund jet plane in ATLAS (ATL-PHYS-PUB-2023–017) Constituent-based W-boson tagging with the ATLAS detector (ATL-PHYS-PUB-2023–020) Transformer Neural Networks for Identifying Boosted Higgs Bosons decaying into bb and cc in ATLAS (ATL-PHYS-PUB-2023–021) Performance and calibration of quark/gluon-jet taggers using 140 fb−1 of proton–proton collisions at 13 TeV with the ATLAS detector (JETM-2020–02) Comparison of ML algorithms for boosted W boson tagging (JETM-2023–003) Summary of new ATLAS results from BOOST 2023, ATLAS News, 31 July 2023.

Aug 23, 2023

I rode in a $789,000 flying car and experienced the future of commuting. Maybe

Posted by in categories: futurism, transportation

Say goodbye to rush-hour traffic. This flying car will cruise at 150 mph when it goes on sale in 2026.

Aug 23, 2023

Meyers Manx 2.0 Electric Buggy Pricing Announced, Starts At $74,000

Posted by in categories: sustainability, transportation

Meyers Manx, the original maker of the Volkswagen Beetle-based, fiberglass-bodied beach buggy from the 1960s, just published the starting price for its all-new, all-electric Manx 2.0 electric buggy, and it’s not exactly cheap.

Revealed last year at The Quail, A Motorsports Gathering, the company’s first all-new vehicle in nearly 20 years starts at $74,000 for the base variant with the 20-kilowatt-hour battery pack and yet-to-be-released performance figures. That’s almost as expensive as the recently introduced Tesla Model S Standard Range, which starts at $78,490 and offers a 320-mile range.

The base MSRP came with no extra information and was casually thrown in a sentence at the end of the press release for the company’s new Resorter Neighborhood Electric Vehicle (NEV), which debuted last week at The Quail, so we still don’t know how much the top-of-the-line model will set prospective customers back.

Aug 23, 2023

This Universal Charger Could Charge Any Electric Vehicle

Posted by in categories: sustainability, transportation

In a recent advance, researchers have created a novel battery charger that can support present and future generations of battery packs for EVs across a vast range of voltages: anything between 120 and 900 volts. The new tech is described in a study published in the September edition of theIEEE Transactions on Power Electronics.


These next-generation batteries will bring shorter charging times while also weighing less, which means that EVs can be ready to drive sooner and travel farther on a full charge. “However, charging these high-voltage batteries with existing chargers degrades the efficiency, due to operating at twice the rated voltage,” says Deepak Ronanki, an assistant professor at the Indian Institute of Technology Madras, in Chennai, India, and an IEEE senior member who was involved in the study.

Ronanki and doctoral research scholar Harish Karneddi created a universal charger capable of supporting voltages between 120 and 900 V—something they say had not yet otherwise been achieved.

Continue reading “This Universal Charger Could Charge Any Electric Vehicle” »

Aug 23, 2023

World’s first wind-powered cargo ship sets sail with groundbreaking giant metal ‘wings’

Posted by in categories: energy, transportation

The world’s first wind-powered cargo ship has set off on her maiden voyage, using her giant metal ‘wings’ to fly through the ocean.

The WindWings have been fitted onto Mitsubishi-owned Pyxis Ocean — chartered by Cargill — and was designed by a team of British Olympic sailors.

It’s been built by Yara Marine Tech, and the WindWings are expected to save up to 30 percent of shipping fuel on average.

Aug 23, 2023

People who use AI will replace workers who don’t: IBM

Posted by in categories: business, employment, robotics/AI, transportation

The report further says 40 percent of workers will need to polish their skills due to the implementation of AI.

Artificial intelligence (AI) won’t replace employees anytime soon. But people who use AI will replace people who don’t, said tech giant IBM in its report, which talks about the implications of AI in businesses.

Companies are rapidly introducing AI into their workings to free up their employees’ time so they can focus on issues that require their personalized attention. The thing about AI is that it will do exactly what you train it to do. So, the hyperboles around the latest technology snatching away people’s jobs and taking over humanity can calm down.

Aug 23, 2023

Powering Ahead: Nobel-Winning Chemistry Unleashes Next-Generation Energy Storage Devices

Posted by in categories: chemistry, energy, sustainability, transportation

Flexible polymers made with a new generation of the Nobel-winning “click chemistry” reaction find use in capacitors and other applications.

Society’s increasing demand for high-voltage electrical technologies – including pulsed power systems, cars, electrified aircraft, and renewable energy applications – requires a new generation of capacitors that store and deliver large amounts of energy under intense thermal and electrical conditions.

A new polymer-based device that efficiently handles record amounts of energy while withstanding extreme temperatures and electric fields has now been developed by researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Scripps Research. The device is composed of materials synthesized via a next-generation version of the chemical reaction for which three scientists won the 2022 Nobel Prize in Chemistry.

Aug 22, 2023

South Korean Scientists Unveil AI Pilot, PiBot

Posted by in categories: robotics/AI, transportation

DALLAS – As the world continues to adapt to the growing trend of Artificial Intelligence (AI), South Korean scientists have unveiled a humanoid robot capable of piloting an aircraft.

Named Pibot, the life-sized robot, measuring 160 cm tall and weighing in at 65 kg, is capable of gripping the controls, memorizing aircraft manuals, and even responding to emergency situations. It is fitted with multiple cameras capable of monitoring the aircraft’s systems and operational conditions.

Currently under development by the Korea Advanced Institute of Science & Technology (KAIST), researchers utilized AI chatbots such as ChatGPT to create ways for PiBot to learn the pilot manuals for various aircraft. The robot can then be changed onto an alternative airframe by clicking the type. It can also memorize worldwide Jeppesen aeronautical navigation charts, an impossible task for its human equivalent.