https://www.youtube.com/watch?v=Xr0fgi75SXc
Buran and the Moonraker Mysterywe embark on a captivating journey into the realm of the unknown, exploring the enigmatic connection between the Soviet space…
https://www.youtube.com/watch?v=Xr0fgi75SXc
Buran and the Moonraker Mysterywe embark on a captivating journey into the realm of the unknown, exploring the enigmatic connection between the Soviet space…
The team behind the breakthrough used the Atacama Large Millimeter/ submillimeter Array (ALMA) to zoom in on water vapor locked up in gas and dust within a protoplanetary disk surrounding the sun-like star HL Tauri, located 450 light-years away from Earth in the constellation Taurus.
“I had never imagined that we could capture an image of oceans of water vapor in the same region where a planet is likely forming,” Stefano Facchini research leader and an astronomer at the University of Milan, said in a statement. “Our results show how the presence of water may influence the development of a planetary system, just like it did some 4.5 billion years ago in our own solar system.”
You may never have heard of magnetars, but they are, in a nutshell an exotic type of neutron star whose magnetic field is around a trillion times stronger than the Earth’s.
To illustrate their strength, if you were to get any closer to a magnetar than about 1,000km (600 miles) away, your body would be totally destroyed.
Its unimaginably powerful field would tear electrons away from your atoms, converting you into a cloud of monatomic ions – single atoms without electrons– as EarthSkynotes.
Recent theoretical studies36,37,38 have revealed that quasicrystalline superconductors exhibit several unconventional behaviors that are typically not observed in other known superconductors in periodic and disordered systems, thus opening a new field in the research of superconductivity. Nagai36 has studied superconducting tight-binding models of Penrose and Ammann – Beenker lattices (typical two-dimensional quasicrystalline lattices) and demonstrated an intrinsic vortex pinning due to spatially inhomogeneous superconducting order parameter. Such an inhomogeneous order parameter arises from the quasicrystalline structural order, and therefore, the vortex pinning occurs without an impurity or defect. Sakai et al37. have investigated quasicrystalline superconductivity using an attractive Hubbard model on a Penrose lattice using the real-space dynamical mean-field theory. Unconventional spatially-extended Cooper pairs were formed; the sum of the momenta of the Cooper pair electrons was nonzero, in contrast to the zero total momentum of the Cooper pair in the conventional BCS superconductivity. Such a nonzero total momentum of the Cooper pair is also observed for the Fulde – Ferrell – Larkin – Ovchinnikov (FFLO) state previously proposed for periodic systems39,40,41,42. However, the unconventional Cooper pairing in the model QC is completely different from the FFLO state because the Cooper pairing occurs under no magnetic field. In addition, under a high magnetic field, a state similar to the FFLO state is formed in the model QC38. However, this state is also different from the conventional FFLO state in periodic systems and forms a fractal-like spatial pattern of the oscillating superconducting order parameter, which is compatible with the self-similar structural order that is possessed by the QCs. As mentioned above, many interesting features are theoretically expected for superconducting QCs, which are yet to be demonstrated experimentally, and the Ta1.6 Te dodecagonal QC phase in the present study offers a precious platform for it.
In conclusion, polygrain Ta1.6 Te dodecagonal QC samples were fabricated by reaction sintering. Careful phase identification of the sample was performed by electron and powder X-ray diffraction experiments and diffraction-profile simulations. The samples were subjected to electrical resistivity, magnetic susceptibility, and specific heat measurements. The results unconditionally validate the occurrence of bulk superconductivity at a \({T}_{{{{{{\rm{c}}}}}}}\) of ~1 K. This is the first example of superconductivity in thermodynamically stable QCs. These findings are expected to motivate further investigations into the physical properties of vdW layered quasicrystals as well as two-dimensional quasicrystals. In particular, the dodecagonal QC provides a valuable platform for the experimental demonstration of the unique superconductivity theoretically predicted for QCs.
The first 500 people to use my link will get a 1 month free trial of Skillshare https://skl.sh/sabinehossenfelder03241
You have probably seen headlines in the past years about lots of things out there in the cosmos that, according to astrophysicists \.
Some investors are raising warnings about the amount of money flowing into direct-air-capture companies, given the high costs and limited markets.
There’s a looming problem in the carbon removal space.
With an emphasis on AI-first strategy and improving Google Cloud databases’ capability to support GenAI applications, Google announced developments in the integration of generative AI with databases.
AWS offers a broad range of services for vector database requirements, including Amazon OpenSearch Service, Amazon Aurora PostgreSQL-Compatible Edition, Amazon RDS for PostgreSQL, Amazon Neptune ML, and Amazon MemoryDB for Redis. AWS emphasizes the operationalization of embedding models, making application development more productive through features like data management, fault tolerance, and critical security features. AWS’s strategy focuses on simplifying the scaling and operationalization of AI-powered applications, providing developers with the tools to innovate and create unique experiences powered by vector search.
Azure takes a similar approach by offering vector database extensions to existing databases. This strategy aims to avoid the extra cost and complexity of moving data to a separate database, keeping vector embeddings and original data together for better data consistency, scale, and performance. Azure Cosmos DB and Azure PostgreSQL Server are positioned as services that support these vector database extensions. Azure’s approach emphasizes the integration of vector search capabilities directly alongside other application data, providing a seamless experience for developers.
Continue reading “Google’s AI-First Strategy Brings Vector Support To Cloud Databases” »
Researchers from China used different spectra of light to maximize data transmission in various modes and setting up interoperability between them.
A new light-based communication network developed through a research collaboration between Nanjing University of Posts and Telecommunications and Suzhou Lighting Chip Monolithic Optoelectronics Technology company in China makes seamless connectivity on land, in the sea, and in the air a reality.
While urban landscapes may enjoy the advantages of wireless 5G internet, many pockets worldwide still need broadband. Even as Elon Musk wants to make space-based ultra-fast internet connections the norm, the services cannot be delivered for undersea activities where research and exploration demand them.
Researchers have found water vapor in the disk around a young star exactly where planets may be forming. Water is a key ingredient for life on Earth and is also thought to play a significant role in planet formation, yet until now, astronomers have never been able to map how water is distributed in a stable, cool disk—the type of disk that offers the most favorable conditions for planets to form around stars.
For the first time, astronomers have weighed the amount of water vapor around a typical planet-forming star.
The new findings were made possible thanks to the Atacama Large Millimeter/submillimeter Array (ALMA)—a collection of telescopes in the Chilean Atacama Desert. The University of Manchester’s Jodrell Bank Centre for Astrophysics hosts the UK ALMA Regional Centre Node (UK ARC).