Archive for the ‘solar power’ category: Page 84
Oct 15, 2020
Turning Diamond Into Metal – For Improved Solar Cells, LEDs, and Power Electronics
Posted by Quinn Sena in categories: quantum physics, solar power, sustainability
Normally an insulator, diamond becomes a metallic conductor when subjected to large strain in a new theoretical model.
Long known as the hardest of all natural materials, diamonds are also exceptional thermal conductors and electrical insulators. Now, researchers have discovered a way to tweak tiny needles of diamond in a controlled way to transform their electronic properties, dialing them from insulating, through semiconducting, all the way to highly conductive, or metallic. This can be induced dynamically and reversed at will, with no degradation of the diamond material.
The research, though still at an early proof-of-concept stage, may open up a wide array of potential applications, including new kinds of broadband solar cells, highly efficient LEDs and power electronics, and new optical devices or quantum sensors, the researchers say.
Oct 15, 2020
Researchers first to develop an organic battery
Posted by Raphael Ramos in categories: solar power, sustainability, transportation
Are organic batteries coming?
Researchers at the Laboratory of Organic Electronics, Linköping University, have for the first time demonstrated an organic battery. It is of a type known as a ‘redox flow battery,” with a large capacity that can be used to store energy from wind turbines and solar cells, and as a power bank for cars.
Redox flow batteries are stationary batteries in which the energy is located in the electrolyte, outside of the cell itself, as in a fuel cell. They are often marketed with the prefix ‘eco,” since they open the possibility of storing excess energy from, for example, the sun and wind. Further, it appears to be possible to recharge them an unlimited number of times. However, redox flow batteries often contain vanadium, a scarce and expensive metal. The electrolyte in which energy is stored in a redox flow battery can be water-based, which makes the battery safe to use, but results in a lower energy density.
Continue reading “Researchers first to develop an organic battery” »
Oct 14, 2020
Alphabet’s New Moonshot Is to Transform How We Grow Food
Posted by Kelvin Dafiaghor in categories: food, genetics, solar power, sustainability
Mineral’s plant buggy looks like a platform on wheels, topped with solar panels and stuffed with cameras, sensors, and software.
But maybe there’s a better way—and Mineral wants to find it.
Like many things nowadays, the key to building something better is data. Genetic data, weather pattern data, soil composition and erosion data, satellite data… The list goes on. As part of the massive data-gathering that will need to be done, X introduced what it’s calling a “plant buggy” (if the term makes you picture a sort of baby stroller for plants, you’re not alone…).
Continue reading “Alphabet’s New Moonshot Is to Transform How We Grow Food” »
Oct 14, 2020
Disney World McDonald’s to be first net-zero fast food restaurant
Posted by Quinn Sena in categories: food, solar power, sustainability
Sustainability comes to the happiest place on Earth! Solar power helps make this Disney World McDonald’s one of the first net-zero fast food restaurants.
Oct 14, 2020
Exploring chemical space: Can AI take us where no human has gone before?
Posted by Genevieve Klien in categories: biotech/medical, chemistry, robotics/AI, solar power
Chemical space contains every possible chemical compound. It includes every drug and material we know and every one we’ll find in the future. It’s practically infinite and can be frustratingly complex. That’s why some chemists are turning to artificial intelligence: AI can explore chemical space faster than humans, and it might be able to find molecules that would elude even expert scientists. But as researchers work to build and refine these AI tools, many questions still remain about how AI can best help search chemical space and when AI will be able to assist the wider chemistry community.
Outer space isn’t the only frontier curious humans are investigating. Chemical space is the conceptual territory inhabited by all possible compounds. It’s where scientists have found every known medicine and material, and it’s where we’ll find the next treatment for cancer and the next light-absorbing substance for solar cells.
But searching chemical space is far from trivial. For one thing, it might as well be infinite. An upper estimate says it contains 10180 compounds, more than twice the magnitude of the number of atoms in the universe. To put that figure in context, the CAS database—one of the world’s largest—currently contains about 108 known organic and inorganic substances, and scientists have synthesized only a fraction of those in the lab. (CAS is a division of the American Chemical Society, which publishes C&EN.) So we’ve barely seen past our own front doorstep into chemical space.
Oct 13, 2020
Solar meets 100 per cent of South Australia demand for first time
Posted by Raphael Ramos in categories: solar power, sustainability
The combination of rooftop and utility scale solar met 100 per cent of demand in South Australia for the first time on Sunday, reaching a milestone that will surely be repeated many times over – and for longer periods – in the future.
The milestone was reached at 12.05pm grid time (Australian eastern standard time), with rooftop solar providing 992MW, or 76.3 per cent of state demand, and utility scale solar providing a further 315MW – meaning all three of the state’s big solar farms, Bungala 1m Bungala 2 and Tailem Bend were operating at full capacity.
Oct 13, 2020
World’s largest solar plant goes online in China
Posted by Raphael Ramos in categories: solar power, sustainability
Huanghe Hydropower Development has connected a 2.2 GW solar plant to the grid in the desert in China’s remote Qinghai province. The project is backed by 202.8 MW/MWh of storage.
Chinese state-owned utility Huanghe Hydropower Development has finished building the world’s largest solar power project in a desert in the northwestern Chinese province of Qinghai.
Chinese inverter manufacturer Sungrow, which supplied the inverters, said that the 2.2 GW solar plant was built in five phases. It involved an investment of RMB15.04 billion ($2.2 billion) and includes 202.8 MW/MWh of storage capacity. The company announced the storage system as a solar+storage project in mid-May, but at the time it did not reveal that it was to be connected to a giant solar plant.
Continue reading “World’s largest solar plant goes online in China” »
Oct 13, 2020
Study uncovers the role of exciton lifetimes in enabling highly efficient organic solar cells
Posted by Quinn Sena in categories: solar power, sustainability
Organic photovoltaics are a third-generation solar cell technology made of electron donor and electron acceptor materials instead of conventional semiconductor p-n junctions. The performance of this alternative solar cell technology has improved significantly over the past few years and it is now comparable to that of classical inorganic solar cells, both in terms of charge carrier yields (i.e., electrical current generation) and solar spectrum matching.
The only feature of organic photovoltaics that still lags behind traditional solar cells is its achievable voltage (VOC, which stands for open circuit voltage). As electrical power is the product of voltage and current, however, the poor VOC of organic solar cells currently prevents their successful commercialization.
Researchers at the Institute of Materials for Electronics and Energy Technology (i-MEET) in Germany and the National Hellenic Research Foundation (NHRF) in Greece have been investigating specific features of materials used to build organic photovoltaics that could enable greater efficiencies and achievable voltages. Their paper, published in Nature Energy, shows that materials with long exciton lifetimes could be particularly promising for the creation of efficient organic solar cells.
Oct 9, 2020
Japan’s Cute Army
Posted by Quinn Sena in categories: military, solar power, sustainability
The unlikely association of Japan’s Self-Defense Forces with adorable anime characters could reflect a deep-seated discomfort with the nation’s military history.