Menu

Blog

Archive for the ‘solar power’ category: Page 118

Dec 26, 2017

How a Machine That Can Make Anything Would Change Everything

Posted by in categories: biotech/medical, food, internet, solar power, sustainability

But the dream of the nanofabricator is not yet dead. What is perhaps even more astonishing than the idea of having such a device—something that could create anything you want—is the potential consequences it could have for society. Suddenly, all you need is light and raw materials. Starvation ceases to be a problem. After all, what is food? Carbon, hydrogen, nitrogen, phosphorous, sulphur. Nothing that you won’t find with some dirt, some air, and maybe a little biomass thrown in for efficiency’s sake.

Equally, there’s no need to worry about not having medicine as long as you have the recipe and a nanofabricator. After all, the same elements I listed above could just as easily make insulin, paracetamol, and presumably the superior drugs of the future, too.

What the internet did for information—allowing it to be shared, transmitted, and replicated with ease, instantaneously—the nanofabricator would do for physical objects. Energy will be in plentiful supply from the sun; your Santa Clause machine will be able to create new solar panels and batteries to harness and store this energy whenever it needs to.

Continue reading “How a Machine That Can Make Anything Would Change Everything” »

Dec 19, 2017

Paving the way for a non-electric battery to store solar energy

Posted by in categories: solar power, sustainability

Materials chemists have been trying for years to make a new type of battery that can store solar or other light-sourced energy in chemical bonds rather than electrons, one that will release the energy on demand as heat instead of electricity — addressing the need for long-term, stable, efficient storage of solar power.

Now a group of materials chemists at the University of Massachusetts Amherst led by Dhandapani Venkataraman, with Ph.D. student and first author Seung Pyo Jeong, Ph.D. students Larry Renna, Connor Boyle and others, report that they have solved one of the major hurdles in the field by developing a polymer-based system. It can yield energy storage density — the amount of energy stored — more than two times higher than previous polymer systems. Details appear in the current issue of Scientific Reports.

Venkataraman and Boyle say that previous high energy storage density achieved in a polymeric system was in the range of 200 Joules per gram, while their new system is able to reach an average of 510 Joules per gram, with a maximum of 690. Venkataraman says, “Theory says that we should be able to achieve 800 Joules per gram, but nobody could do it. This paper reports that we’ve reached one of the highest energy densities stored per gram in a polymeric system, and how we did it.”

Continue reading “Paving the way for a non-electric battery to store solar energy” »

Dec 18, 2017

Using Nanotechnology, not Water, to Clean Solar Panels

Posted by in categories: nanotechnology, particle physics, solar power, space, sustainability

Although solar panels might appear bright and shiny, in desert environments, where they are most frequently installed, layers of dust and other particles can quickly coat their surface. These coatings can affect the panels’ ability to absorb sunlight and drastically reduce the conversion of the sun’s rays into energy, making it necessary to periodically wash the panels with water. But often, in areas like Nevada, water resources are scarce.

Consequently, NEXUS scientists have turned their attention toward developing technologies for waterless cleaning. NASA has already been using such techniques to wash panels in the lunar and Mars missions, but their developed methodologies prove too expensive for widespread public application. NEXUS scientist Biswajit Das of UNLV and his team are aiming to develop a water-free cleaning technology that will be cost-effective for large-scale photovoltaic generation, whereby they look to nanotechnology, rather than water, to clean the panels. “Our mission is to develop a waterless, or at least a less-water cleaning technique to address the effect of dust on solar panels,” Das says. “Once developed, this method will significantly reduce water use for the future PV generation.”

Continue reading “Using Nanotechnology, not Water, to Clean Solar Panels” »

Dec 16, 2017

Forget Tesla’s Solar Roof: This Startup Tells Us Solar Window is the Future

Posted by in categories: futurism, solar power

SolarWindow wants to change the world.

Read more

Dec 8, 2017

Solar power glass bricks generate energy while letting in light

Posted by in categories: solar power, sustainability

These glass bricks serve as solar panels AND windows.

Read more

Dec 3, 2017

The Tantalizing Dream of Blanketing the Sahara in Solar Panels

Posted by in categories: solar power, sustainability

Just need 400 billion and 1.2% of the land area.


Desertec continues in a smaller form; they’re still building power plants in Morocco to supply the local energy needs of that country. Perhaps a ground-up approach, where MENA countries increase their own solar production in the desert before becoming net exporters, will provide the solution. This project is not the first wildly ambitious scheme to provide for the world’s energy needs that has stalled; historians remember Atlantropa, a scheme to dam the Strait of Gibraltar and use it for hydroelectric power that had some interest in the 1920s.

Yet the prospect remains tantalizing. Surely, when only a tiny fraction of the Earth’s surface need be devoted to energy production to provide us with more power than we could ever dream of consuming, we won’t wreck the planet by getting that energy through dirty and dangerous means. To starry-eyed idealists, it must seem equivalent to being on a raft in a lake full of drinking water—and choosing instead to swig from a bottle of seawater in your backpack. Solar power in the world’s deserts is one of the few feasible, renewable ways of providing energy on the scale we currently demand as humans. Someday, we will make better use of the abundant energy from the sun. We’ll have to.

Continue reading “The Tantalizing Dream of Blanketing the Sahara in Solar Panels” »

Nov 28, 2017

How Zero Mass is using solar panels to pull drinkable water directly from the air

Posted by in categories: solar power, sustainability

Zero Mass’s ambitious plan to change water.

Read more

Nov 20, 2017

Tesla Roadster might fly — By Peter Valdes-Dapena | CNN Tech

Posted by in categories: Elon Musk, solar power, space, sustainability, transportation

“Musk seems to be talking about something different, a sports car that could “hop” over obstacles. The emphasis would, presumably, still be on performance and practicality with four wheels on the ground.”

Read more

Nov 6, 2017

Researchers develop wallpaper bio-solar panel

Posted by in categories: nanotechnology, solar power, sustainability

A two-in-one solar bio-battery and solar panel has been created by researchers who printed living cyanobacteria and circuitry onto paper.

Cyanobacteria are photosynthetic micro-organisms that have been on Earth for billions of years. They are thought to be the primary reason why the Earth’s atmosphere is oxygen rich.

Now, a team has demonstrated that cyanobacteria could be used as an ink and printed from an in precise patterns onto electrically conductive carbon nanotubes, which were also inkjet-printed onto the piece of paper. The team showed that the cyanobacteria survived the printing process and were able to perform photosynthesis so that small amounts of electrical energy could be harvested over a period of 100 hours.

Read more

Oct 31, 2017

The Huge Promise of Transparent Solar Cells—Turning the World’s Glass Surfaces Into Solar Panels

Posted by in categories: solar power, sustainability

A long way to go but potentially well worth the R&D.


Transparent solar cells started to emerge in the last 5–6 years, but there are already some live installations of this tech with impressive performance.

Read more